{"title":"Using insolubility wave-front for polymer deposition on self-assembling microfabricated parts","authors":"C. Morris, H. Ho, B. Parviz","doi":"10.1109/ICMENS.2005.130","DOIUrl":null,"url":null,"abstract":"Many low temperature techniques exist for the deposition of polymer material. However, existing techniques require macroscopic substrates and are therefore inadequate for small, released microfabricated parts. We present a method for depositing material on microparts or substrates which utilizes a macroscopic solubility change to induce microscopic precipitation and selective deposition. Selectivity was achieved by modification of surface energy using self-assembled monolayers. We term this method insoluble liquid energy minimization, or ILEM. Macroscale substrates were used to characterize ILEM, and the method was applied to 20-100 /spl mu/m-sized microfabricated parts which self-assembled into three-dimensional microstructures.","PeriodicalId":185824,"journal":{"name":"2005 International Conference on MEMS,NANO and Smart Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Conference on MEMS,NANO and Smart Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMENS.2005.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Many low temperature techniques exist for the deposition of polymer material. However, existing techniques require macroscopic substrates and are therefore inadequate for small, released microfabricated parts. We present a method for depositing material on microparts or substrates which utilizes a macroscopic solubility change to induce microscopic precipitation and selective deposition. Selectivity was achieved by modification of surface energy using self-assembled monolayers. We term this method insoluble liquid energy minimization, or ILEM. Macroscale substrates were used to characterize ILEM, and the method was applied to 20-100 /spl mu/m-sized microfabricated parts which self-assembled into three-dimensional microstructures.