An Incremental Algorithm for Clustering Search Results

Yongli Liu, Y. Ouyang, Hao Sheng, Z. Xiong
{"title":"An Incremental Algorithm for Clustering Search Results","authors":"Yongli Liu, Y. Ouyang, Hao Sheng, Z. Xiong","doi":"10.1109/SITIS.2008.53","DOIUrl":null,"url":null,"abstract":"When Internet users are facing massive search results, document clustering techniques are very helpful. Generally, existing clustering methods start with a known set of data objects, measured against a known set of attributes. However, there are numerous applications where the attribute set can only obtained gradually as processing data objects incrementally. This paper presents an incremental clustering algorithm (ICA) for clustering search results, which relies on pair-wise search result similarity calculated using Jaccard method. We use a measure namely, cluster average similarity area to score cluster cohesiveness. Experimental results show that our algorithm leads to less computational time than traditional clustering method while achieving a comparable or better clustering quality.","PeriodicalId":202698,"journal":{"name":"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2008.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

When Internet users are facing massive search results, document clustering techniques are very helpful. Generally, existing clustering methods start with a known set of data objects, measured against a known set of attributes. However, there are numerous applications where the attribute set can only obtained gradually as processing data objects incrementally. This paper presents an incremental clustering algorithm (ICA) for clustering search results, which relies on pair-wise search result similarity calculated using Jaccard method. We use a measure namely, cluster average similarity area to score cluster cohesiveness. Experimental results show that our algorithm leads to less computational time than traditional clustering method while achieving a comparable or better clustering quality.
一种搜索结果聚类的增量算法
当互联网用户面对大量的搜索结果时,文档聚类技术是非常有帮助的。通常,现有的聚类方法从一组已知的数据对象开始,根据一组已知的属性进行度量。但是,在许多应用程序中,属性集只能通过增量处理数据对象逐渐获得。本文提出了一种基于Jaccard方法计算的成对搜索结果相似度的增量聚类算法(ICA)。我们使用聚类平均相似面积来衡量聚类的内聚性。实验结果表明,与传统聚类方法相比,该算法的计算时间更少,但聚类质量相当或更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信