A novel feature selection in the case of brain PET image classification

Imene Garali, M. Adel, S. Bourennane, E. Guedj
{"title":"A novel feature selection in the case of brain PET image classification","authors":"Imene Garali, M. Adel, S. Bourennane, E. Guedj","doi":"10.1109/EUSIPCO.2015.7362463","DOIUrl":null,"url":null,"abstract":"Positron Emission Tomography (PET) imaging is of importance for diagnosing neurodegenerative diseases like Alzheimer Disease (AD). Computer aided diagnosis methods could process and analyze quantitatively these images, in order to better characterize and extract meaningful information for medical diagnosis. This paper presents a novel computer-aided diagnosis technique for brain PET images classification in the case of AD. Brain images are first segmented into Regions Of Interest (ROI) using an atlas. Computing some statistical parameters on these regions, we define a Separation Power Factor (SPF) associated to each region. This factor quantifies the ability of each region to separate AD from Healthy Control (HC) brain images. Ranking selected regions according to their SPF and inputting them to a Support Vector Machine (SVM) classifier, yields better classification accuracy rate than when inputting the same number of ranked regions extracted from four others classical feature selection methods.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Positron Emission Tomography (PET) imaging is of importance for diagnosing neurodegenerative diseases like Alzheimer Disease (AD). Computer aided diagnosis methods could process and analyze quantitatively these images, in order to better characterize and extract meaningful information for medical diagnosis. This paper presents a novel computer-aided diagnosis technique for brain PET images classification in the case of AD. Brain images are first segmented into Regions Of Interest (ROI) using an atlas. Computing some statistical parameters on these regions, we define a Separation Power Factor (SPF) associated to each region. This factor quantifies the ability of each region to separate AD from Healthy Control (HC) brain images. Ranking selected regions according to their SPF and inputting them to a Support Vector Machine (SVM) classifier, yields better classification accuracy rate than when inputting the same number of ranked regions extracted from four others classical feature selection methods.
脑PET图像分类中的一种新的特征选择方法
正电子发射断层扫描(PET)对阿尔茨海默病(AD)等神经退行性疾病的诊断具有重要意义。计算机辅助诊断方法可以对这些图像进行定量处理和分析,以便更好地表征和提取有意义的信息用于医学诊断。本文提出了一种新的计算机辅助诊断技术,用于对AD的脑PET图像进行分类。首先使用地图集将脑图像分割成感兴趣区域(ROI)。计算这些区域的一些统计参数,我们定义了与每个区域相关联的分离功率因数(SPF)。这个因素量化了每个区域从健康控制(HC)脑图像中分离AD的能力。根据所选区域的SPF值对其进行排序,并将其输入到支持向量机(SVM)分类器中,比输入从其他四种经典特征选择方法中提取的相同数量的排序区域获得更好的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信