Simulation research of industrial enterprise total profits based on the neural network of ARIMA

Menggang Li, Changsheng Zhou, Lian Lian, Wenrui Li
{"title":"Simulation research of industrial enterprise total profits based on the neural network of ARIMA","authors":"Menggang Li, Changsheng Zhou, Lian Lian, Wenrui Li","doi":"10.1109/IEIS.2016.7551899","DOIUrl":null,"url":null,"abstract":"Industrial enterprise total profit is the important indicator to measure the status of industrial economic sentiment over a given period of time, and also the first indicator for researching the macroeconomic early-warning. In this paper, the ARIMA neural network model is built, through the ARIMA theory combined with neural network theory, using 1997-2015 monthly time series data of the industrial enterprise total profit, to carry out the simulation research of the industrial enterprise total profit. First of all, make the seasonal adjustment for industrial enterprise total profit, to get rid of the seasonal factors of industrial enterprise total profit in the time series. Secondly, to emulate the 1997 ~ 2015 monthly industrial enterprise total profit by ARIMA neural network model, the simulation results show a good simulation training effect. Finally, using ARIMA neural network model to carry on the simulation of the industrial enterprise total profit from January to June in 2016, finally get the simulation values of industrial enterprise total profit from January to June in 2016.","PeriodicalId":334364,"journal":{"name":"2016 International Conference on Industrial Economics System and Industrial Security Engineering (IEIS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Industrial Economics System and Industrial Security Engineering (IEIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEIS.2016.7551899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Industrial enterprise total profit is the important indicator to measure the status of industrial economic sentiment over a given period of time, and also the first indicator for researching the macroeconomic early-warning. In this paper, the ARIMA neural network model is built, through the ARIMA theory combined with neural network theory, using 1997-2015 monthly time series data of the industrial enterprise total profit, to carry out the simulation research of the industrial enterprise total profit. First of all, make the seasonal adjustment for industrial enterprise total profit, to get rid of the seasonal factors of industrial enterprise total profit in the time series. Secondly, to emulate the 1997 ~ 2015 monthly industrial enterprise total profit by ARIMA neural network model, the simulation results show a good simulation training effect. Finally, using ARIMA neural network model to carry on the simulation of the industrial enterprise total profit from January to June in 2016, finally get the simulation values of industrial enterprise total profit from January to June in 2016.
基于ARIMA神经网络的工业企业总利润仿真研究
工业企业利润总额是衡量一定时期内工业经济景气状况的重要指标,也是研究宏观经济预警的首要指标。本文建立了ARIMA神经网络模型,通过ARIMA理论与神经网络理论相结合,利用1997-2015年工业企业利润总额月度时间序列数据,对工业企业利润总额进行了仿真研究。首先,对工业企业利润总额进行季节性调整,去除时间序列中工业企业利润总额的季节性因素。其次,利用ARIMA神经网络模型对1997 ~ 2015年月度工业企业利润总额进行仿真,仿真结果显示出良好的仿真训练效果。最后,利用ARIMA神经网络模型对2016年1 - 6月工业企业利润总额进行仿真,最终得到2016年1 - 6月工业企业利润总额的仿真值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信