{"title":"GeCo: Classification Restricted Boltzmann Machine Hardware for On-Chip Learning","authors":"Wooseok Yi, Junki Park, Jae-Joon Kim","doi":"10.1145/3130265.3138856","DOIUrl":null,"url":null,"abstract":"We present a Classification Restricted Boltzmann Machine (Class-RBM) hardware for embedded machines with on-chip learning capability. The RBM is a kind of the generative model, and has been used as one of the most popular feature extractors and image preprocessors. The ClassRBM is a variant of the RBM that is adapted to classification tasks. We propose the multi-Neuron-Per-Class (multi-NPC) voting scheme for improving accuracy of ClassRBM. We also show that the Contrastive Divergence (CD), which is one of the most popular algorithms to train RBM, has limitations in multi-NPC ClassRBM learning and propose a modified CD algorithm to overcome the limitation. Experimental results on FPGA flatform for MNIST datasets confirm that classification accuracy of the proposed algorithm is ~ 2.12% higher than the conventional CD.","PeriodicalId":157455,"journal":{"name":"2017 International Symposium on Rapid System Prototyping (RSP)","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Rapid System Prototyping (RSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3130265.3138856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We present a Classification Restricted Boltzmann Machine (Class-RBM) hardware for embedded machines with on-chip learning capability. The RBM is a kind of the generative model, and has been used as one of the most popular feature extractors and image preprocessors. The ClassRBM is a variant of the RBM that is adapted to classification tasks. We propose the multi-Neuron-Per-Class (multi-NPC) voting scheme for improving accuracy of ClassRBM. We also show that the Contrastive Divergence (CD), which is one of the most popular algorithms to train RBM, has limitations in multi-NPC ClassRBM learning and propose a modified CD algorithm to overcome the limitation. Experimental results on FPGA flatform for MNIST datasets confirm that classification accuracy of the proposed algorithm is ~ 2.12% higher than the conventional CD.