Incremental Updating Multigranulation Approximations with Matrix Representation Under Coarsening Decision Attribute

Qiaowen Deng, Jin Qian, Ying Yu
{"title":"Incremental Updating Multigranulation Approximations with Matrix Representation Under Coarsening Decision Attribute","authors":"Qiaowen Deng, Jin Qian, Ying Yu","doi":"10.1109/ccis57298.2022.10016356","DOIUrl":null,"url":null,"abstract":"Incremental learning is a computing method for dynamic systems. In this paper, we study the coarsening of decision attribute values in multi-granularity and define some matrixes and multi granularity fusion method based on matrix representation. In addition, we design an algorithm for calculating approximations. Furthermore, we describe the coarsening method of decision attributes, and update the multi-granularity probability approximations by updating matrixes and propose related algorithms. Compared with non-incremental algorithm, incremental algorithm can effectively accelerate knowledge acquisition.","PeriodicalId":374660,"journal":{"name":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ccis57298.2022.10016356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Incremental learning is a computing method for dynamic systems. In this paper, we study the coarsening of decision attribute values in multi-granularity and define some matrixes and multi granularity fusion method based on matrix representation. In addition, we design an algorithm for calculating approximations. Furthermore, we describe the coarsening method of decision attributes, and update the multi-granularity probability approximations by updating matrixes and propose related algorithms. Compared with non-incremental algorithm, incremental algorithm can effectively accelerate knowledge acquisition.
决策属性粗化下矩阵表示的增量更新多粒逼近
增量学习是动态系统的一种计算方法。本文研究了多粒度决策属性值的粗化问题,定义了一些基于矩阵表示的矩阵和多粒度融合方法。此外,我们还设计了一种计算近似的算法。在此基础上,描述了决策属性的粗化方法,通过更新矩阵对多粒度概率逼近进行更新,并提出了相应的算法。与非增量算法相比,增量算法可以有效地加速知识获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信