R. Wille, Oliver Keszöcze, S. Hillmich, Marcel Walter, A. Ortiz
{"title":"Synthesis of approximate coders for on-chip interconnects using reversible logic","authors":"R. Wille, Oliver Keszöcze, S. Hillmich, Marcel Walter, A. Ortiz","doi":"10.3850/9783981537079_0287","DOIUrl":null,"url":null,"abstract":"On-chip coding provides a remarkable potential to improve the energy efficiency of on-chip interconnects. However, the logic design of the encoder/decoder faces a main challenge: the area and power overhead should be minimal while, at the same time, decodability has to be guaranteed. To address these problems, we propose the concept of approximate coding, where the coding function is partially specified and the synthesis algorithm has a higher flexibility to simplify the circuit. Since conventional synthesis methods are unsuitable here, we propose an alternative synthesis approach based on reversible logic. Experimental evaluations confirm the benefits of both, the proposed concept of approximate codings as well as the proposed design method.","PeriodicalId":311352,"journal":{"name":"2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3850/9783981537079_0287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
On-chip coding provides a remarkable potential to improve the energy efficiency of on-chip interconnects. However, the logic design of the encoder/decoder faces a main challenge: the area and power overhead should be minimal while, at the same time, decodability has to be guaranteed. To address these problems, we propose the concept of approximate coding, where the coding function is partially specified and the synthesis algorithm has a higher flexibility to simplify the circuit. Since conventional synthesis methods are unsuitable here, we propose an alternative synthesis approach based on reversible logic. Experimental evaluations confirm the benefits of both, the proposed concept of approximate codings as well as the proposed design method.