Intelligent modified mean shift tracking using genetic algorithm

M. Azghani, A. Aghagolzadeh, S. Ghaemi, M. Kouzehgar
{"title":"Intelligent modified mean shift tracking using genetic algorithm","authors":"M. Azghani, A. Aghagolzadeh, S. Ghaemi, M. Kouzehgar","doi":"10.1109/ISTEL.2010.5734133","DOIUrl":null,"url":null,"abstract":"Object Tracking using mean shift algorithm has gained much attention in recent years due to its simplicity. In this paper, we present a modified mean shift tracking method using genetic algorithm. First, a background elimination method is used to eliminate the effects of the background on the target model. The mean shift procedure is applied only for one iteration to give a good approximate region of the target. In the next step, the genetic algorithm is used as a local search tool to exactly identify the target in a small window around the position obtained from the mean shift algorithm. The simulation results prove that the proposed method outperforms the traditional mean shift algorithm in finding the precise location of the target at the expense of slightly more complexity.","PeriodicalId":306663,"journal":{"name":"2010 5th International Symposium on Telecommunications","volume":"40 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 5th International Symposium on Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTEL.2010.5734133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Object Tracking using mean shift algorithm has gained much attention in recent years due to its simplicity. In this paper, we present a modified mean shift tracking method using genetic algorithm. First, a background elimination method is used to eliminate the effects of the background on the target model. The mean shift procedure is applied only for one iteration to give a good approximate region of the target. In the next step, the genetic algorithm is used as a local search tool to exactly identify the target in a small window around the position obtained from the mean shift algorithm. The simulation results prove that the proposed method outperforms the traditional mean shift algorithm in finding the precise location of the target at the expense of slightly more complexity.
基于遗传算法的智能修正均值漂移跟踪
利用均值移位算法进行目标跟踪,由于其简单易行,近年来受到了广泛的关注。本文提出了一种基于遗传算法的改进均值漂移跟踪方法。首先,采用背景消除法消除背景对目标模型的影响。为了得到一个较好的目标近似区域,该算法只进行了一次迭代。下一步,利用遗传算法作为局部搜索工具,在均值移位算法得到的位置周围的小窗口内精确识别目标。仿真结果表明,该方法在寻找目标精确位置方面优于传统的均值移位算法,但复杂度略高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信