Investigating the Use of Semantic-Based Websites to Improve Recommendation Quality

Taees Eimuri, Sara Salehi
{"title":"Investigating the Use of Semantic-Based Websites to Improve Recommendation Quality","authors":"Taees Eimuri, Sara Salehi","doi":"10.1109/ICCRD.2010.48","DOIUrl":null,"url":null,"abstract":"In this paper, we aim to investigate the use of semantic-based websites to improve recommendation quality by testing a knowledge based recommendation system whose results completely depends on the product descriptions, on two different databases. In one of our relational MySQL databases, product descriptions are stored in form of RDF files and in the other one the data is stored in human language. We show that, the RS results are more accurate and intelligent when it is working with the semantic based database that stores product information in form of RDF graphs. Since, the welldefined data can help the recommendation system to analyze an extract the data better and make \"smart\" decisions.","PeriodicalId":158568,"journal":{"name":"2010 Second International Conference on Computer Research and Development","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computer Research and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCRD.2010.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we aim to investigate the use of semantic-based websites to improve recommendation quality by testing a knowledge based recommendation system whose results completely depends on the product descriptions, on two different databases. In one of our relational MySQL databases, product descriptions are stored in form of RDF files and in the other one the data is stored in human language. We show that, the RS results are more accurate and intelligent when it is working with the semantic based database that stores product information in form of RDF graphs. Since, the welldefined data can help the recommendation system to analyze an extract the data better and make "smart" decisions.
研究使用基于语义的网站来提高推荐质量
在本文中,我们的目标是通过在两个不同的数据库上测试一个基于知识的推荐系统,该系统的结果完全依赖于产品描述,来研究使用基于语义的网站来提高推荐质量。在我们的一个关系MySQL数据库中,产品描述以RDF文件的形式存储,而在另一个数据库中,数据以人类语言存储。我们表明,当RS与以RDF图形式存储产品信息的基于语义的数据库一起工作时,RS结果更加准确和智能。因为,定义良好的数据可以帮助推荐系统更好地分析和提取数据,并做出“明智”的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信