M. Hayashikoshi, H. Noda, H. Kawai, K. Nii, H. Kondo
{"title":"Low-power multi-sensor system with task scheduling and autonomous standby mode transition control for IoT applications","authors":"M. Hayashikoshi, H. Noda, H. Kawai, K. Nii, H. Kondo","doi":"10.1109/CoolChips.2017.7946385","DOIUrl":null,"url":null,"abstract":"The low-power multi-sensor system with task scheduling and autonomous standby mode transition control for IoT applications are proposed, which achieves almost zero standby power at the no-operation modes. A power management scheme with activity localization can reduce the number of transitions between power-on and power-off modes with re-scheduling and bundling task procedures. And autonomously standby mode transition control selects the optimum standby mode of microcontrollers, reducing total power consumption. We demonstrate with evaluation board as a use case of IoT applications, observing 91% power reductions by adopting task scheduling and autonomously standby mode transition control combination.","PeriodicalId":439955,"journal":{"name":"2017 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)","volume":"314 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoolChips.2017.7946385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The low-power multi-sensor system with task scheduling and autonomous standby mode transition control for IoT applications are proposed, which achieves almost zero standby power at the no-operation modes. A power management scheme with activity localization can reduce the number of transitions between power-on and power-off modes with re-scheduling and bundling task procedures. And autonomously standby mode transition control selects the optimum standby mode of microcontrollers, reducing total power consumption. We demonstrate with evaluation board as a use case of IoT applications, observing 91% power reductions by adopting task scheduling and autonomously standby mode transition control combination.