Integer Convolutional Neural Networks with Boolean Activations: The BoolHash Algorithm

Grigor Gatchev, V. Mollov
{"title":"Integer Convolutional Neural Networks with Boolean Activations: The BoolHash Algorithm","authors":"Grigor Gatchev, V. Mollov","doi":"10.1109/ECCTD49232.2020.9218306","DOIUrl":null,"url":null,"abstract":"Improving the efficiency of convolutional neural networks (CNN) often relies on integer-only algorithms. Using boolean activations can bring further inference speed gain, and can make easier the design of CNN-specific ASICs. A convolutional algorithm called BoolHash that we propose here can additionally increase the inference speed several times, and permits functionalities that usually require more complex processing. A CNN model with 16-bit input weights, 8-bit filter weights and 1-bit activations was used to compare the speed of BoolHash to that of a classic weight-adder convolutional algorithm.","PeriodicalId":336302,"journal":{"name":"2020 European Conference on Circuit Theory and Design (ECCTD)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 European Conference on Circuit Theory and Design (ECCTD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCTD49232.2020.9218306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Improving the efficiency of convolutional neural networks (CNN) often relies on integer-only algorithms. Using boolean activations can bring further inference speed gain, and can make easier the design of CNN-specific ASICs. A convolutional algorithm called BoolHash that we propose here can additionally increase the inference speed several times, and permits functionalities that usually require more complex processing. A CNN model with 16-bit input weights, 8-bit filter weights and 1-bit activations was used to compare the speed of BoolHash to that of a classic weight-adder convolutional algorithm.
布尔激活的整数卷积神经网络:BoolHash算法
提高卷积神经网络(CNN)的效率往往依赖于纯整数算法。使用布尔激活可以带来进一步的推理速度增益,并且可以简化cnn专用asic的设计。我们在这里提出的一种称为BoolHash的卷积算法可以将推理速度提高几倍,并允许通常需要更复杂处理的功能。使用具有16位输入权值、8位滤波器权值和1位激活的CNN模型来比较BoolHash的速度与经典加权加法器卷积算法的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信