Daniel J. Short, Tingjun Lei, C. Luo, Daniel W. Carruth, Z. Bi
{"title":"A bio-inspired algorithm in image-based path planning and localization using visual features and maps","authors":"Daniel J. Short, Tingjun Lei, C. Luo, Daniel W. Carruth, Z. Bi","doi":"10.20517/ir.2023.14","DOIUrl":null,"url":null,"abstract":"With the growing applications of autonomous robots and vehicles in unknown environments, studies on image-based localization and navigation have attracted a great deal of attention. This study is significantly motivated by the observation that relatively little research has been published on the integration of cutting-edge path planning algorithms for robust, reliable, and effective image-based navigation. To address this gap, a biologically inspired Bat Algorithm (BA) is introduced and adopted for image-based path planning in this paper. The proposed algorithm utilizes visual features as the reference in generating a path for an autonomous vehicle, and these features are extracted from the obtained images by convolutional neural networks (CNNs). The paper proceeds as follows: first, the requirements for image-based localization and navigation are described. Second, the principles of the BA are explained in order to expound on the justifications for its successful incorporation in image-based navigation. Third, in the proposed image-based navigation system, the BA is developed and implemented as a path planning tool for global path planning. Finally, the performance of the BA is analyzed and verified through simulation and comparison studies to demonstrate its effectiveness.","PeriodicalId":426514,"journal":{"name":"Intelligence & Robotics","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence & Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ir.2023.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
With the growing applications of autonomous robots and vehicles in unknown environments, studies on image-based localization and navigation have attracted a great deal of attention. This study is significantly motivated by the observation that relatively little research has been published on the integration of cutting-edge path planning algorithms for robust, reliable, and effective image-based navigation. To address this gap, a biologically inspired Bat Algorithm (BA) is introduced and adopted for image-based path planning in this paper. The proposed algorithm utilizes visual features as the reference in generating a path for an autonomous vehicle, and these features are extracted from the obtained images by convolutional neural networks (CNNs). The paper proceeds as follows: first, the requirements for image-based localization and navigation are described. Second, the principles of the BA are explained in order to expound on the justifications for its successful incorporation in image-based navigation. Third, in the proposed image-based navigation system, the BA is developed and implemented as a path planning tool for global path planning. Finally, the performance of the BA is analyzed and verified through simulation and comparison studies to demonstrate its effectiveness.