A Design Approach to Traffic Flow Forecasting with Soft Computing Tools

Snehal Jawanjal, P. Bajaj
{"title":"A Design Approach to Traffic Flow Forecasting with Soft Computing Tools","authors":"Snehal Jawanjal, P. Bajaj","doi":"10.1109/ICETET.2010.179","DOIUrl":null,"url":null,"abstract":"This paper focuses on traffic flow forecasting approach based on soft computing tools. The soft computing tools used is Particle Swarm Optimization (PSO) with Wavelet Network Model(WNM). The forecast of short-term traffic flow in timely and accurate is one of important contents of intelligent transportation system research. The modelling of traffic characteristics and the prediction of future traffic flow are the first steps to efficient network control and management. The real traffic data is used to demonstrate that the PSO algorithm combined with WNM is effective for traffic flow forecasting. The simulation results demonstrate that the proposed model can improve prediction accuracy and outperforms other compared methods. A new hybrid model between wavelet analysis and a neural network: wavelet network model absorbs some merits of wavelet transform and artificial neural network.","PeriodicalId":175615,"journal":{"name":"2010 3rd International Conference on Emerging Trends in Engineering and Technology","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Conference on Emerging Trends in Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETET.2010.179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper focuses on traffic flow forecasting approach based on soft computing tools. The soft computing tools used is Particle Swarm Optimization (PSO) with Wavelet Network Model(WNM). The forecast of short-term traffic flow in timely and accurate is one of important contents of intelligent transportation system research. The modelling of traffic characteristics and the prediction of future traffic flow are the first steps to efficient network control and management. The real traffic data is used to demonstrate that the PSO algorithm combined with WNM is effective for traffic flow forecasting. The simulation results demonstrate that the proposed model can improve prediction accuracy and outperforms other compared methods. A new hybrid model between wavelet analysis and a neural network: wavelet network model absorbs some merits of wavelet transform and artificial neural network.
基于软计算工具的交通流预测设计方法
本文主要研究基于软计算工具的交通流预测方法。使用的软计算工具是基于小波网络模型的粒子群算法。及时、准确地预测短期交通流量是智能交通系统研究的重要内容之一。交通特性的建模和未来交通流的预测是有效控制和管理网络的第一步。通过实际交通数据验证了粒子群算法与WNM相结合的交通流预测方法的有效性。仿真结果表明,该模型可以提高预测精度,优于其他比较方法。小波分析与神经网络的一种新的混合模型:小波网络模型吸收了小波变换和人工神经网络的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信