Efficiently Learning Manipulations by Selecting Structured Skill Representations

Mohit Sharma, Oliver Kroemer
{"title":"Efficiently Learning Manipulations by Selecting Structured Skill Representations","authors":"Mohit Sharma, Oliver Kroemer","doi":"10.1109/IROS47612.2022.9981422","DOIUrl":null,"url":null,"abstract":"A key challenge in learning to perform manipulation tasks is selecting a suitable skill representation. While specific skill representations are often easier to learn, they are often only suitable for a narrow set of tasks. In most prior works, roboticists manually provide the robot with a suitable skill representation to use e.g. a neural network or DMPs. By contrast, we propose to allow the robot to select the most appropriate skill representation for the underlying task. Given the large space of skill representations, we utilize a single demonstration to select a small set of potential task-relevant representations. This set is then further refined using reinforcement learning to select the most suitable skill representation. Experiments in both simulation and real world show how our proposed approach leads to improved sample efficiency and enables directly learning on the real robot.","PeriodicalId":431373,"journal":{"name":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"724 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS47612.2022.9981422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A key challenge in learning to perform manipulation tasks is selecting a suitable skill representation. While specific skill representations are often easier to learn, they are often only suitable for a narrow set of tasks. In most prior works, roboticists manually provide the robot with a suitable skill representation to use e.g. a neural network or DMPs. By contrast, we propose to allow the robot to select the most appropriate skill representation for the underlying task. Given the large space of skill representations, we utilize a single demonstration to select a small set of potential task-relevant representations. This set is then further refined using reinforcement learning to select the most suitable skill representation. Experiments in both simulation and real world show how our proposed approach leads to improved sample efficiency and enables directly learning on the real robot.
通过选择结构化技能表征有效学习操作
学习执行操作任务的一个关键挑战是选择合适的技能表示。虽然特定的技能表示通常更容易学习,但它们通常只适用于一小部分任务。在大多数先前的工作中,机器人专家手动为机器人提供合适的技能表示,例如神经网络或dmp。相比之下,我们建议允许机器人为底层任务选择最合适的技能表示。考虑到技能表征的大空间,我们利用一个单一的演示来选择一组潜在的任务相关表征。然后使用强化学习进一步细化该集合,以选择最合适的技能表示。仿真和现实世界的实验表明,我们提出的方法如何提高样本效率,并使真实机器人能够直接学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信