Combined GIS and ROV technologies improve characterization of water quality in coastal rivers of the Gulf of Mexico

A. Casper, E. Steimle, M. Hall, B. Dixon
{"title":"Combined GIS and ROV technologies improve characterization of water quality in coastal rivers of the Gulf of Mexico","authors":"A. Casper, E. Steimle, M. Hall, B. Dixon","doi":"10.23919/oceans.2009.5422061","DOIUrl":null,"url":null,"abstract":"Rivers, estuaries, reservoirs, and lakes are multi-use systems that supply water for agricultural, industrial, and human consumption while simultaneously assimilating both point- and non-point source discharges. Existing methods of data collection are generally limited to snapshots in space and time while a comprehensive view of spatial variability remains elusive. Accelerating the integration of existing in-situ sensors, geospatial analysis techniques, and reliable autonomous sampling platform technologies provide immediate improvements for sampling and assessment programs. We provide a demonstration of this integration for high spatial resolution sampling and analysis in a non-wadeable river with an inexpensive unmanned sampling platform (USV), standards sensor arrays, and widely used geospatial techniques. These are used to creating 2-D maps of temperature, conductivity, salinity, turbidity, chlorophyll florescence and chromophoric dissolved organic matter (CDOM). 2-D surface water quality maps show significant influences on local water quality from tributary confluences, submarine groundwater plumes, floodplain/riparian interfaces and other patchily distributed limnological features. Moreover, this project demonstrates how sensors, autonomous vehicles, and geospatial technologies work in concert to create a more comprehensive spatial picture compared to the standard systematic sampling grid with data displayed as means and standard deviations.","PeriodicalId":119977,"journal":{"name":"OCEANS 2009","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2009","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/oceans.2009.5422061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Rivers, estuaries, reservoirs, and lakes are multi-use systems that supply water for agricultural, industrial, and human consumption while simultaneously assimilating both point- and non-point source discharges. Existing methods of data collection are generally limited to snapshots in space and time while a comprehensive view of spatial variability remains elusive. Accelerating the integration of existing in-situ sensors, geospatial analysis techniques, and reliable autonomous sampling platform technologies provide immediate improvements for sampling and assessment programs. We provide a demonstration of this integration for high spatial resolution sampling and analysis in a non-wadeable river with an inexpensive unmanned sampling platform (USV), standards sensor arrays, and widely used geospatial techniques. These are used to creating 2-D maps of temperature, conductivity, salinity, turbidity, chlorophyll florescence and chromophoric dissolved organic matter (CDOM). 2-D surface water quality maps show significant influences on local water quality from tributary confluences, submarine groundwater plumes, floodplain/riparian interfaces and other patchily distributed limnological features. Moreover, this project demonstrates how sensors, autonomous vehicles, and geospatial technologies work in concert to create a more comprehensive spatial picture compared to the standard systematic sampling grid with data displayed as means and standard deviations.
GIS和ROV技术的结合改善了墨西哥湾沿岸河流水质的表征
河流、河口、水库和湖泊是多用途系统,为农业、工业和人类消费供水,同时吸收点源和非点源排放的水。现有的数据收集方法通常仅限于空间和时间的快照,而对空间变异性的全面看法仍然难以捉摸。加速现有的原位传感器、地理空间分析技术和可靠的自主采样平台技术的集成,为采样和评估计划提供了直接的改进。我们通过廉价的无人采样平台(USV)、标准传感器阵列和广泛使用的地理空间技术,展示了这种集成在不可涉水河流中的高空间分辨率采样和分析。这些用于创建温度、电导率、盐度、浊度、叶绿素荧光和显色性溶解有机物(CDOM)的二维地图。二维地表水水质图显示了支流汇流、海底地下水羽流、漫滩/河岸界面和其他斑状分布的湖泊特征对当地水质的显著影响。此外,该项目还展示了传感器、自动驾驶汽车和地理空间技术如何协同工作,以创建更全面的空间图像,而不是将数据显示为均值和标准差的标准系统采样网格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信