Impedance renormalization in CMOS-based single-element electronic de-embedding

Jun-Chau Chienand, A. Niknejad
{"title":"Impedance renormalization in CMOS-based single-element electronic de-embedding","authors":"Jun-Chau Chienand, A. Niknejad","doi":"10.1109/ARFTG.2015.7162910","DOIUrl":null,"url":null,"abstract":"In this work, an impedance renormalization technique dedicated for single-element de-embedding algorithm is proposed. By performing impedance modulation using CMOS transistors, reflection measurements with both ideal shorts and opens are generated from the measured two-port S-parameters. Such measurements with known terminations are further utilized for finding the solution to the test fixture and the characteristic impedance of the on-chip transmission line. As a single structure is sufficient, considerable savings in silicon area and improved accuracy due to reduced number of probing is achievable. Experimental results up to 65 GHz have validated the proposed single-element approach.","PeriodicalId":228314,"journal":{"name":"2015 85th Microwave Measurement Conference (ARFTG)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 85th Microwave Measurement Conference (ARFTG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARFTG.2015.7162910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this work, an impedance renormalization technique dedicated for single-element de-embedding algorithm is proposed. By performing impedance modulation using CMOS transistors, reflection measurements with both ideal shorts and opens are generated from the measured two-port S-parameters. Such measurements with known terminations are further utilized for finding the solution to the test fixture and the characteristic impedance of the on-chip transmission line. As a single structure is sufficient, considerable savings in silicon area and improved accuracy due to reduced number of probing is achievable. Experimental results up to 65 GHz have validated the proposed single-element approach.
基于cmos的单元件电子脱嵌中的阻抗重整化
本文提出了一种用于单元去嵌入算法的阻抗重整化技术。通过使用CMOS晶体管进行阻抗调制,从测量的两端口s参数中产生具有理想短路和开路的反射测量值。这样的测量与已知的终端被进一步用于寻找解决测试夹具和片上传输线的特性阻抗。由于单一结构就足够了,因此可以节省大量的硅面积,并且由于减少了探测次数而提高了精度。高达65 GHz的实验结果验证了所提出的单元件方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信