Jakub Kmiecik, P. Kulakowski, K. Wójcik, A. Jajszczyk
{"title":"Communication via FRET in Nanonetworks of Mobile Proteins","authors":"Jakub Kmiecik, P. Kulakowski, K. Wójcik, A. Jajszczyk","doi":"10.1145/2967446.2967477","DOIUrl":null,"url":null,"abstract":"A practical, biologically motivated case of protein complexes (immunoglobulin G and FcRII receptors) moving on the surface of mastcells, that are common parts of an immunological system, is investigated. Proteins are considered as nanomachines creating a nanonetwork. Accurate molecular models of the proteins and the fluorophores which act as their nanoantennas are used to simulate the communication between the nanomachines when they are close to each other. The theory of diffusion-based Brownian motion is applied to model movements of the proteins. It is assumed that fluorophore molecules send and receive signals using the Förster Resonance Energy Transfer. The probability of the efficient signal transfer and the respective bit error rate are calculated and discussed.","PeriodicalId":281609,"journal":{"name":"Proceedings of the 3rd ACM International Conference on Nanoscale Computing and Communication","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd ACM International Conference on Nanoscale Computing and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2967446.2967477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A practical, biologically motivated case of protein complexes (immunoglobulin G and FcRII receptors) moving on the surface of mastcells, that are common parts of an immunological system, is investigated. Proteins are considered as nanomachines creating a nanonetwork. Accurate molecular models of the proteins and the fluorophores which act as their nanoantennas are used to simulate the communication between the nanomachines when they are close to each other. The theory of diffusion-based Brownian motion is applied to model movements of the proteins. It is assumed that fluorophore molecules send and receive signals using the Förster Resonance Energy Transfer. The probability of the efficient signal transfer and the respective bit error rate are calculated and discussed.