Павел Игоревич Тесемников, Pavel Igorevich Tesemnikov, Сергей Георгиевич Фосс, Sergei Georgievich Foss
{"title":"Вероятность достижения удаляющейся границы ветвящимся случайным блужданием с затуханием ветвления и тяжелым хвостом распределения скачков","authors":"Павел Игоревич Тесемников, Pavel Igorevich Tesemnikov, Сергей Георгиевич Фосс, Sergei Georgievich Foss","doi":"10.4213/tm4237","DOIUrl":null,"url":null,"abstract":"Фосс и Захари (2003) и Фосс, Пальмовски и Захари (2005) изучали вероятность достижения удаляющейся границы на интервале времени случайной длины случайным блужданием, распределение скачков которого имеет тяжелый хвост. Они предложили и развили новый подход, который позволил обобщить результаты Асмуссена (1998) на случай произвольных моментов остановки и широкого класса нелинейных границ и получить равномерные утверждения по всем моментам остановки. В данной работе рассмотрен один класс ветвящихся случайных блужданий с затуханием ветвления, для которого получены утверждения об асимптотике максимума значений ветвящегося случайного блуждания на интервале времени случайной (возможно, неограниченной) длины, а также равномерные утверждения по классу ограниченных случайных интервалов времени.","PeriodicalId":134662,"journal":{"name":"Trudy Matematicheskogo Instituta imeni V.A. Steklova","volume":"325 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trudy Matematicheskogo Instituta imeni V.A. Steklova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/tm4237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Фосс и Захари (2003) и Фосс, Пальмовски и Захари (2005) изучали вероятность достижения удаляющейся границы на интервале времени случайной длины случайным блужданием, распределение скачков которого имеет тяжелый хвост. Они предложили и развили новый подход, который позволил обобщить результаты Асмуссена (1998) на случай произвольных моментов остановки и широкого класса нелинейных границ и получить равномерные утверждения по всем моментам остановки. В данной работе рассмотрен один класс ветвящихся случайных блужданий с затуханием ветвления, для которого получены утверждения об асимптотике максимума значений ветвящегося случайного блуждания на интервале времени случайной (возможно, неограниченной) длины, а также равномерные утверждения по классу ограниченных случайных интервалов времени.