Enhancing pattern search for global optimization with an additive global and local Gaussian Process model

Qun Meng, S. Ng
{"title":"Enhancing pattern search for global optimization with an additive global and local Gaussian Process model","authors":"Qun Meng, S. Ng","doi":"10.1109/WSC.2017.8247942","DOIUrl":null,"url":null,"abstract":"Optimization of complex real-time control systems often requires efficient response to any system changes over time. By combining pattern search optimization with a fast estimated Gaussian Process model, we are able to perform global optimization more efficiently for response surfaces with multiple local minimums or even dramatic changes over the design space. Our approach extends pattern search for global optimization problems by incorporating the global and local information provided by an additive global and local Gaussian Process model. We further develop a global search method to identify multiple promising local regions for parallel implementation of local pattern search. We demonstrate our methods on a standard test problem.","PeriodicalId":145780,"journal":{"name":"2017 Winter Simulation Conference (WSC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2017.8247942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Optimization of complex real-time control systems often requires efficient response to any system changes over time. By combining pattern search optimization with a fast estimated Gaussian Process model, we are able to perform global optimization more efficiently for response surfaces with multiple local minimums or even dramatic changes over the design space. Our approach extends pattern search for global optimization problems by incorporating the global and local information provided by an additive global and local Gaussian Process model. We further develop a global search method to identify multiple promising local regions for parallel implementation of local pattern search. We demonstrate our methods on a standard test problem.
利用全局加性高斯过程和局部加性高斯过程模型增强全局优化的模式搜索
复杂实时控制系统的优化通常需要对任何系统随时间变化的有效响应。通过将模式搜索优化与快速估计的高斯过程模型相结合,我们能够更有效地对具有多个局部最小值的响应面执行全局优化,甚至可以在设计空间中进行剧烈变化。我们的方法通过结合全局和局部高斯过程模型提供的全局和局部信息,扩展了全局优化问题的模式搜索。我们进一步开发了一种全局搜索方法来识别多个有希望的局部区域,以并行实现局部模式搜索。我们在一个标准测试问题上演示我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信