L. Duan, Xiuyu Li, Wenli Liu, Zhixiong Hu, Baoyu Hong
{"title":"Development of metrology and calibration device for ophthalmic optical instruments: fundus cameras","authors":"L. Duan, Xiuyu Li, Wenli Liu, Zhixiong Hu, Baoyu Hong","doi":"10.1117/12.2603191","DOIUrl":null,"url":null,"abstract":"In this article, a novel optical metrology and calibration device is designed, which can be used for the metrology and calibration of ophthalmic optical instrument - fundus cameras. Fundus camera is widely used in the field of diagnosing fundus diseases due to its high accuracy, simple structure and easy operation. The model eye we designed, including the cornea, lens and other major refractive parts of human eye can test multiple key parameters of fundus cameras, such as resolution, field of view, diopter and so on. A resolution board with micron-level precision for the detection of resolution is designed and processed by coating technology. The mechanical structures of the model eye including the cyclic structure for testing the field of view are designed and processed by 3D printing technology. In addition, different diopters have been developed for simulating nearsightedness and farsightedness. Testing results show that the model eye we designed can be used for metrology and calibration of fundus cameras, and has the advantages of high accuracy, high integration, strong stability and applicability.","PeriodicalId":330466,"journal":{"name":"Sixteenth National Conference on Laser Technology and Optoelectronics","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixteenth National Conference on Laser Technology and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2603191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, a novel optical metrology and calibration device is designed, which can be used for the metrology and calibration of ophthalmic optical instrument - fundus cameras. Fundus camera is widely used in the field of diagnosing fundus diseases due to its high accuracy, simple structure and easy operation. The model eye we designed, including the cornea, lens and other major refractive parts of human eye can test multiple key parameters of fundus cameras, such as resolution, field of view, diopter and so on. A resolution board with micron-level precision for the detection of resolution is designed and processed by coating technology. The mechanical structures of the model eye including the cyclic structure for testing the field of view are designed and processed by 3D printing technology. In addition, different diopters have been developed for simulating nearsightedness and farsightedness. Testing results show that the model eye we designed can be used for metrology and calibration of fundus cameras, and has the advantages of high accuracy, high integration, strong stability and applicability.