{"title":"On the Observability of Quantum Dynamical Systems","authors":"Tristan D. Griffith, Vinod P. Gehlot, M. Balas","doi":"10.1115/imece2022-88856","DOIUrl":null,"url":null,"abstract":"\n Quantum statistical mechanics offers an increasingly relevant theory for a wide variety of probabilistic systems including thermodynamics, particle dynamics, and robotics. Quantum dynamical systems can be described by linear time invariant systems and so there is a need to build out traditional control theory for quantum statistical mechanics. The probability information in a quantum dynamical system evolves according to the quantum master equation, whose state is a matrix instead of a column vector. Accordingly, the traditional notion of a full rank observability matrix does not apply. In this work, we develop a proof of observability for quantum dynamical systems including a rank test and algorithmic considerations. A qubit example is provided for situations where the dynamical system is both observable and unobservable.","PeriodicalId":302047,"journal":{"name":"Volume 5: Dynamics, Vibration, and Control","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Dynamics, Vibration, and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-88856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum statistical mechanics offers an increasingly relevant theory for a wide variety of probabilistic systems including thermodynamics, particle dynamics, and robotics. Quantum dynamical systems can be described by linear time invariant systems and so there is a need to build out traditional control theory for quantum statistical mechanics. The probability information in a quantum dynamical system evolves according to the quantum master equation, whose state is a matrix instead of a column vector. Accordingly, the traditional notion of a full rank observability matrix does not apply. In this work, we develop a proof of observability for quantum dynamical systems including a rank test and algorithmic considerations. A qubit example is provided for situations where the dynamical system is both observable and unobservable.