Efficient Search Structures for Wikipedia based on User Communities

G. Sadasivam, N. Krishnamoorthy, R. Radhakrishnan
{"title":"Efficient Search Structures for Wikipedia based on User Communities","authors":"G. Sadasivam, N. Krishnamoorthy, R. Radhakrishnan","doi":"10.5958/J.2249-3212.2.1.001","DOIUrl":null,"url":null,"abstract":"Wikipedia is a free, web-based encyclopaedia with over 3.5 million articles in English. The graph structure of Wikipedia contains the articles as nodes and the links between the articles as the edges. In Wikipedia information is maintained using MySQL schemas. The problem with relational systems is that it is not suitable to maintain adhoc, dynamic, complex and deeply associative information. The vast amount of information in Wikipedia requires the use of specialised databases and data structures to enable efficient search. This paper proposes persistent and in-memory structures for Wikipedia articles considering both the link and content information. Further personalisation and improvement of search efficiency can be brought about by group personalisation. Personalisation at the user level and group level are considered. It maps the persistent structure consisting of group and community information to in-memory B+ Tree graph structure for a particular user. Experimental results demonstrate the efficiency of the proposed approach.","PeriodicalId":406236,"journal":{"name":"International Journal of Regulation and Governance","volume":"13 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Regulation and Governance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5958/J.2249-3212.2.1.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Wikipedia is a free, web-based encyclopaedia with over 3.5 million articles in English. The graph structure of Wikipedia contains the articles as nodes and the links between the articles as the edges. In Wikipedia information is maintained using MySQL schemas. The problem with relational systems is that it is not suitable to maintain adhoc, dynamic, complex and deeply associative information. The vast amount of information in Wikipedia requires the use of specialised databases and data structures to enable efficient search. This paper proposes persistent and in-memory structures for Wikipedia articles considering both the link and content information. Further personalisation and improvement of search efficiency can be brought about by group personalisation. Personalisation at the user level and group level are considered. It maps the persistent structure consisting of group and community information to in-memory B+ Tree graph structure for a particular user. Experimental results demonstrate the efficiency of the proposed approach.
基于用户社区的维基百科高效搜索结构
维基百科是一个免费的、基于网络的百科全书,有超过350万篇英文文章。维基百科的图结构以文章为节点,文章之间的链接为边。在维基百科中,信息是使用MySQL模式维护的。关系系统的问题是不适合维护特殊的、动态的、复杂的和深度关联的信息。维基百科中大量的信息需要使用专门的数据库和数据结构来实现有效的搜索。本文提出了一种同时考虑链接和内容信息的维基百科条目的持久化和内存结构。群体个性化可以带来进一步的个性化和搜索效率的提高。考虑了用户级和组级的个性化。它将由组和社区信息组成的持久结构映射到特定用户的内存B+树图结构。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信