{"title":"High-resolution configuration of optically reconfigurable gate arrays","authors":"Kouta Akagi, Minoru Watanabe","doi":"10.1109/ISNE.2015.7131967","DOIUrl":null,"url":null,"abstract":"Recently, optically reconfigurable gate arrays (OR-GAs) have been developed to offer numerous reconfiguration contexts with high-speed dynamic reconfiguration. Such ORGAs consist of a holographic memory, a laser array, and optically reconfigurable gate array VLSI. The storage capacity of a three-dimensional holographic memory is much higher than that of current two-dimensional memory technologies. Therefore, even Tera-gate-count circuit information can be stored on such a holographic memory. Moreover, high-speed reconfiguration can be realized by exploiting two-dimensional free optical connections between a holographic memory and a photodiode array on an optically reconfigurable gate array VLSI. Such high-speed dynamic reconfiguration can increase the gate array performance. Currently, we are trying to develop a high-density optically reconfigurable gate array VLSI. An important bottleneck is the limitation of light diffraction. This report presents a method of increasing the resolution of diffraction light for realizing a high-density optically reconfigurable gate array VLSI.","PeriodicalId":152001,"journal":{"name":"2015 International Symposium on Next-Generation Electronics (ISNE)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Next-Generation Electronics (ISNE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNE.2015.7131967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Recently, optically reconfigurable gate arrays (OR-GAs) have been developed to offer numerous reconfiguration contexts with high-speed dynamic reconfiguration. Such ORGAs consist of a holographic memory, a laser array, and optically reconfigurable gate array VLSI. The storage capacity of a three-dimensional holographic memory is much higher than that of current two-dimensional memory technologies. Therefore, even Tera-gate-count circuit information can be stored on such a holographic memory. Moreover, high-speed reconfiguration can be realized by exploiting two-dimensional free optical connections between a holographic memory and a photodiode array on an optically reconfigurable gate array VLSI. Such high-speed dynamic reconfiguration can increase the gate array performance. Currently, we are trying to develop a high-density optically reconfigurable gate array VLSI. An important bottleneck is the limitation of light diffraction. This report presents a method of increasing the resolution of diffraction light for realizing a high-density optically reconfigurable gate array VLSI.