Datacenter Workload Classification and Characterization: An Empirical Approach

V. S. Shekhawat, A. Gautam, A. Thakrar
{"title":"Datacenter Workload Classification and Characterization: An Empirical Approach","authors":"V. S. Shekhawat, A. Gautam, A. Thakrar","doi":"10.1109/ICIINFS.2018.8721402","DOIUrl":null,"url":null,"abstract":"Datacenter traffic has increased significantly due to rising number of web applications on Internet. These applications have diverse Quality of Service (QoS) requirements making datacenter management a complex task. For a datacenter the amount of resources required for a given resource type (computing, memory, network and storage) is termed as workload. In cloud datacenters, workload classification and characterization is used for resource management, application performance management, capacity sizing, and for estimating the future resource demand. An accurate estimation of future resource demand helps in meeting QoS requirements and ensure efficient resource utilization. Thus modeling and characterization of datacenter workloads becomes necessary to meet performance requirements of applications in a cost-efficient manner. In this paper, a methodology to classify datacenter workloads and characterize them based on resource usage is proposed. Two different workloads have been used, one is Google Cluster Trace (GCT) dataset and other is Bit Brains Trace (BBT) dataset. Seven different machine learning algorithms for workload classification have been used. Workload distribution is estimated in a mix of heterogeneous applications for both GCT and BBT. The seven machine learning algorithms have been compared on the basis of their classification accuracy. Finally, an algorithm to estimate the importance of different attributes for classification is proposed in this paper.","PeriodicalId":397083,"journal":{"name":"2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2018.8721402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Datacenter traffic has increased significantly due to rising number of web applications on Internet. These applications have diverse Quality of Service (QoS) requirements making datacenter management a complex task. For a datacenter the amount of resources required for a given resource type (computing, memory, network and storage) is termed as workload. In cloud datacenters, workload classification and characterization is used for resource management, application performance management, capacity sizing, and for estimating the future resource demand. An accurate estimation of future resource demand helps in meeting QoS requirements and ensure efficient resource utilization. Thus modeling and characterization of datacenter workloads becomes necessary to meet performance requirements of applications in a cost-efficient manner. In this paper, a methodology to classify datacenter workloads and characterize them based on resource usage is proposed. Two different workloads have been used, one is Google Cluster Trace (GCT) dataset and other is Bit Brains Trace (BBT) dataset. Seven different machine learning algorithms for workload classification have been used. Workload distribution is estimated in a mix of heterogeneous applications for both GCT and BBT. The seven machine learning algorithms have been compared on the basis of their classification accuracy. Finally, an algorithm to estimate the importance of different attributes for classification is proposed in this paper.
数据中心工作负载分类和表征:一种实证方法
由于Internet上web应用程序数量的增加,数据中心的流量显著增加。这些应用程序具有不同的服务质量(QoS)需求,使得数据中心管理成为一项复杂的任务。对于数据中心来说,给定资源类型(计算、内存、网络和存储)所需的资源量称为工作负载。在云数据中心中,工作负载分类和特征用于资源管理、应用程序性能管理、容量大小和估计未来的资源需求。准确估计未来的资源需求有助于满足QoS要求,确保资源的有效利用。因此,为了以经济高效的方式满足应用程序的性能需求,必须对数据中心工作负载进行建模和表征。本文提出了一种基于资源使用情况对数据中心工作负载进行分类和表征的方法。使用了两种不同的工作负载,一种是谷歌集群跟踪(GCT)数据集,另一种是比特大脑跟踪(BBT)数据集。工作负载分类使用了七种不同的机器学习算法。在GCT和BBT的异构应用程序混合中估计工作负载分布。在分类精度的基础上,对七种机器学习算法进行了比较。最后,本文提出了一种估计不同属性对分类重要性的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信