Neural recognition of diagnostic test data transforms

J. Scully
{"title":"Neural recognition of diagnostic test data transforms","authors":"J. Scully","doi":"10.1109/AUTEST.1994.381587","DOIUrl":null,"url":null,"abstract":"By extending the concept of fault signatures on the primary outputs of the UUT to include the multiple parameters required of mixed signal testing, a fault dictionary approach to mixed signal UUT diagnostics can be developed. Transforms of fault signature ensemble information, as opposed to transforms of the time varying test signals themselves, can then be used as inputs to a neural net, the outputs of which are available to enhance conventional, fault dictionary processing of the original fault signature information.<<ETX>>","PeriodicalId":308840,"journal":{"name":"Proceedings of AUTOTESTCON '94","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of AUTOTESTCON '94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUTEST.1994.381587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By extending the concept of fault signatures on the primary outputs of the UUT to include the multiple parameters required of mixed signal testing, a fault dictionary approach to mixed signal UUT diagnostics can be developed. Transforms of fault signature ensemble information, as opposed to transforms of the time varying test signals themselves, can then be used as inputs to a neural net, the outputs of which are available to enhance conventional, fault dictionary processing of the original fault signature information.<>
诊断测试数据变换的神经识别
通过扩展UUT主要输出上的故障特征的概念,使其包含混合信号测试所需的多个参数,可以开发用于混合信号UUT诊断的故障字典方法。然后,与时变测试信号本身的变换相反,故障签名集合信息的变换可以用作神经网络的输入,神经网络的输出可用于增强对原始故障签名信息的常规故障字典处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信