The Research on information recommendation model based on an improved deep learning Model

Hansong Zou
{"title":"The Research on information recommendation model based on an improved deep learning Model","authors":"Hansong Zou","doi":"10.1145/3516529.3516600","DOIUrl":null,"url":null,"abstract":"In recent years, information recommendation system has been widely used in various fields. Deep learning is increasingly combined with information recommendation system to capture user preference or item interaction evolution over time. In this paper, we improve the deep learning model applied to information recommendation system, and use LDA (Linear Discriminant Analysis) classifier instead of the Softmax. Experimental results show that our method has better accuracy, recall rate and F1-Score. It has certain significance for the development of recommendation information service for follow-up research.","PeriodicalId":205338,"journal":{"name":"2021 2nd Artificial Intelligence and Complex Systems Conference","volume":"259 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd Artificial Intelligence and Complex Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3516529.3516600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, information recommendation system has been widely used in various fields. Deep learning is increasingly combined with information recommendation system to capture user preference or item interaction evolution over time. In this paper, we improve the deep learning model applied to information recommendation system, and use LDA (Linear Discriminant Analysis) classifier instead of the Softmax. Experimental results show that our method has better accuracy, recall rate and F1-Score. It has certain significance for the development of recommendation information service for follow-up research.
基于改进深度学习模型的信息推荐模型研究
近年来,信息推荐系统在各个领域得到了广泛的应用。深度学习越来越多地与信息推荐系统相结合,以捕捉用户偏好或项目交互随时间的演变。本文改进了应用于信息推荐系统的深度学习模型,使用LDA (Linear Discriminant Analysis,线性判别分析)分类器代替Softmax。实验结果表明,该方法具有较好的准确率、召回率和F1-Score。对推荐信息服务的发展进行后续研究具有一定的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信