Supervising Communication SoC for Secure Operation Using Machine Learning

Abdelrahman Elkanishy, Abdel-Hameed A. Badawy, P. Furth, L. Boucheron, Christopher P. Michael
{"title":"Supervising Communication SoC for Secure Operation Using Machine Learning","authors":"Abdelrahman Elkanishy, Abdel-Hameed A. Badawy, P. Furth, L. Boucheron, Christopher P. Michael","doi":"10.1109/MWSCAS.2019.8885273","DOIUrl":null,"url":null,"abstract":"Manufacturers normally buy and/or fabricate communication chips using third-party suppliers, which are then integrated into a complex hardware-software stack with a variety of potential vulnerabilities. This work proposes a compact supervisory circuit to classify the operation of a Bluetooth (BT) SoC at low frequencies by monitoring the input power and radio frequency (RF) output of the BT chip passed through an envelope detector. The idea is to inexpensively fabricate an envelope detector, power supply current monitor, and classification algorithm on a custom low-frequency integrated circuit in a trusted legacy technology. When the supervisory circuit detects unexpected behavior, it can shut off power to the BT SoC. In this preliminary work, we proto-type the supervisory circuit using off-the-shelf components. We extract simple yet descriptive features from the envelope of the RF output signal. Then, we train machine learning (ML) models to classify different BT operation modes, such as BT advertising and transmit modes. Our results show ∼100% classification accuracy.","PeriodicalId":287815,"journal":{"name":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2019.8885273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Manufacturers normally buy and/or fabricate communication chips using third-party suppliers, which are then integrated into a complex hardware-software stack with a variety of potential vulnerabilities. This work proposes a compact supervisory circuit to classify the operation of a Bluetooth (BT) SoC at low frequencies by monitoring the input power and radio frequency (RF) output of the BT chip passed through an envelope detector. The idea is to inexpensively fabricate an envelope detector, power supply current monitor, and classification algorithm on a custom low-frequency integrated circuit in a trusted legacy technology. When the supervisory circuit detects unexpected behavior, it can shut off power to the BT SoC. In this preliminary work, we proto-type the supervisory circuit using off-the-shelf components. We extract simple yet descriptive features from the envelope of the RF output signal. Then, we train machine learning (ML) models to classify different BT operation modes, such as BT advertising and transmit modes. Our results show ∼100% classification accuracy.
使用机器学习监督通信SoC的安全操作
制造商通常使用第三方供应商购买和/或制造通信芯片,然后将其集成到具有各种潜在漏洞的复杂硬件软件堆栈中。这项工作提出了一种紧凑的监控电路,通过监测通过包络检测器的BT芯片的输入功率和射频(RF)输出,对蓝牙(BT) SoC在低频下的操作进行分类。其想法是在可信赖的传统技术中,在定制的低频集成电路上廉价地制造包络检测器,电源电流监视器和分类算法。当监控电路检测到异常行为时,它可以关闭BT SoC的电源。在这项初步工作中,我们使用现成的组件对监控电路进行原型设计。我们从射频输出信号的包络中提取简单而描述性的特征。然后,我们训练机器学习(ML)模型来分类不同的BT运营模式,如BT广告和传输模式。我们的结果显示分类准确率为~ 100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信