{"title":"A SYSTEMATIC REVIEW OF DC WIND FARM COLLECTOR COST-EFFECTIVENESS","authors":"V. Timmers, A. E. Álvarez, A. Gkountaras","doi":"10.1049/icp.2021.2454","DOIUrl":null,"url":null,"abstract":"DC collection systems have been suggested to improve the cost-effectiveness of offshore wind farms but no consensus currently exists on which configurations are the most promising. This paper aims to determine the primary DC wind farm candidates for commercialisation based on cost-effectiveness and technological risk. A systematic review was performed of the literature that formally assesses the cost, losses or reliability of DC wind farm configurations. The optimal configurations were found to be dependent on the methodology and assumptions used by each study, as well as the individual wind farm characteristics. Series and series-parallel DC designs without offshore platform performed well in terms of costs, but have challenges in operation and reliability that limit the short-term opportunity for commercialisation. The standard DC parallel topology has the lowest technological risk, but the mean cost reported in the literature is similar to that of AC topologies. Standard parallel DC wind farms are the primary candidate for the first commercial DC wind farm demonstrators, but the optimal design will likely need to be determined on a case-by-case basis. Guidelines for this assessment are provided.","PeriodicalId":347664,"journal":{"name":"The 17th International Conference on AC and DC Power Transmission (ACDC 2021)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 17th International Conference on AC and DC Power Transmission (ACDC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/icp.2021.2454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
DC collection systems have been suggested to improve the cost-effectiveness of offshore wind farms but no consensus currently exists on which configurations are the most promising. This paper aims to determine the primary DC wind farm candidates for commercialisation based on cost-effectiveness and technological risk. A systematic review was performed of the literature that formally assesses the cost, losses or reliability of DC wind farm configurations. The optimal configurations were found to be dependent on the methodology and assumptions used by each study, as well as the individual wind farm characteristics. Series and series-parallel DC designs without offshore platform performed well in terms of costs, but have challenges in operation and reliability that limit the short-term opportunity for commercialisation. The standard DC parallel topology has the lowest technological risk, but the mean cost reported in the literature is similar to that of AC topologies. Standard parallel DC wind farms are the primary candidate for the first commercial DC wind farm demonstrators, but the optimal design will likely need to be determined on a case-by-case basis. Guidelines for this assessment are provided.