{"title":"Combat the disaster: Communications in smart grid alleviate cascading failures","authors":"Mingkui Wei, Wenye Wang","doi":"10.1109/HONET.2014.7029377","DOIUrl":null,"url":null,"abstract":"Cascading failure is one of the most catastrophic events in power grid, which refers to large scale power system outage caused by the rampant spread of small scale system fault or even single device failure. Its disastrous result is expected to be mitigated in the scope of smart gird, in which communication enabled smart devices exchange critical information to preclude such events. To carry the concept into reality, one pivotal step is quantitative study of the benefit smart grid can bring, i.e., to what extent smart grid can improve power system stability, specifically, in combating cascading failure? We identify three aspects, time, space, and scale, which are needed for thorough evaluation of the impact of a cascading failure, and further propose a new cascading failure model which is able to depict all three aspects with numerical results. Our observations explicitly suggest that communication between power devices is essential in alleviating the impact of cascading failure, and that even a basic information exchange among limited number of power devices could significantly ameliorate the aftermath of a cascading failure in power grid.","PeriodicalId":297826,"journal":{"name":"2014 11th Annual High Capacity Optical Networks and Emerging/Enabling Technologies (Photonics for Energy)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th Annual High Capacity Optical Networks and Emerging/Enabling Technologies (Photonics for Energy)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HONET.2014.7029377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Cascading failure is one of the most catastrophic events in power grid, which refers to large scale power system outage caused by the rampant spread of small scale system fault or even single device failure. Its disastrous result is expected to be mitigated in the scope of smart gird, in which communication enabled smart devices exchange critical information to preclude such events. To carry the concept into reality, one pivotal step is quantitative study of the benefit smart grid can bring, i.e., to what extent smart grid can improve power system stability, specifically, in combating cascading failure? We identify three aspects, time, space, and scale, which are needed for thorough evaluation of the impact of a cascading failure, and further propose a new cascading failure model which is able to depict all three aspects with numerical results. Our observations explicitly suggest that communication between power devices is essential in alleviating the impact of cascading failure, and that even a basic information exchange among limited number of power devices could significantly ameliorate the aftermath of a cascading failure in power grid.