Analisa Sentimen Pengguna Transportasi Jakarta Terhadap Transjakarta Menggunakan Metode Naives Bayes dan K-Nearest Neighbor

Ismia Iwandini, Agung Triayudi, Gatot Soepriyono
{"title":"Analisa Sentimen Pengguna Transportasi Jakarta Terhadap Transjakarta Menggunakan Metode Naives Bayes dan K-Nearest Neighbor","authors":"Ismia Iwandini, Agung Triayudi, Gatot Soepriyono","doi":"10.47065/josh.v4i2.2937","DOIUrl":null,"url":null,"abstract":"Social media used in communicating that is very popular in Indonesia. One of the most popular is Twitter. Twitter is a social media site where people can share information publicly. This information can be processed to make sentiment analysis. This research attempts to create a system that can detect positive or negative sentiments in public information. The method used for this sentiment classification is the comparison method of Naive Bayes Classifier and K-Nearest Neighbor Classifier using TF-IDF weighting. The input to this system is in the form of tweet data for Transjakarta, while the output of this system is in the form of visualization of positive and negative sentiment data using Streamlit which is a library from python. Based on testing the accuracy of the Naive Bayes approach for sentiment analysis of Twitter data related to the use of Transjakarta transportation is 61.1%, and the accuracy of the K-Nearest Neighbor method is 75.7%. For the two methods used in determining the level of accuracy, it can be concluded that the K-nearest-neighbor method produces better accuracy.","PeriodicalId":233506,"journal":{"name":"Journal of Information System Research (JOSH)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information System Research (JOSH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47065/josh.v4i2.2937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Social media used in communicating that is very popular in Indonesia. One of the most popular is Twitter. Twitter is a social media site where people can share information publicly. This information can be processed to make sentiment analysis. This research attempts to create a system that can detect positive or negative sentiments in public information. The method used for this sentiment classification is the comparison method of Naive Bayes Classifier and K-Nearest Neighbor Classifier using TF-IDF weighting. The input to this system is in the form of tweet data for Transjakarta, while the output of this system is in the form of visualization of positive and negative sentiment data using Streamlit which is a library from python. Based on testing the accuracy of the Naive Bayes approach for sentiment analysis of Twitter data related to the use of Transjakarta transportation is 61.1%, and the accuracy of the K-Nearest Neighbor method is 75.7%. For the two methods used in determining the level of accuracy, it can be concluded that the K-nearest-neighbor method produces better accuracy.
使用Naives Bayes和K-Nearest邻里的方法分析雅加达对雅加达运输用户的感情
社交媒体在印尼非常流行。其中最受欢迎的是Twitter。推特是一个人们可以公开分享信息的社交媒体网站。这些信息可以被处理来进行情感分析。本研究试图创建一个可以检测公共信息中积极或消极情绪的系统。这种情感分类使用的方法是使用TF-IDF加权的朴素贝叶斯分类器和k近邻分类器的比较方法。该系统的输入是Transjakarta的tweet数据形式,而该系统的输出是使用python库Streamlit的积极和消极情绪数据的可视化形式。基于测试,朴素贝叶斯方法对与雅加达交通使用相关的Twitter数据进行情感分析的准确率为61.1%,k近邻方法的准确率为75.7%。对于确定精度水平的两种方法,可以得出结论,k最近邻方法具有更好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信