Anisha M. Thanki, Steven P T Hooton, A. Gigante, R. Atterbury, M. Clokie
{"title":"Potential Roles for Bacteriophages in Reducing Salmonella from Poultry and Swine","authors":"Anisha M. Thanki, Steven P T Hooton, A. Gigante, R. Atterbury, M. Clokie","doi":"10.5772/INTECHOPEN.96984","DOIUrl":null,"url":null,"abstract":"This chapter discusses application of natural parasites of bacteria, bacteriophages (phages), as a promising biological control for Salmonella in poultry and swine. Many studies have shown phages can be applied at different points from farm-to-fork, from pre to post slaughter, to control the spread of Salmonella in the food chain. Pre-slaughter applications include administering phages via oral gavage, in drinking water and in feed. Post slaughter applications include adding phages to carcasses and during packaging of meat products. The research discussed in this chapter demonstrate a set of promising data that relate to the ability of phages to reduce Salmonella colonisation and abundance. Collectively the studies support the viability of phage as antimicrobial prophylactics and therapeutics to prevent and control Salmonella in the food chain.","PeriodicalId":151982,"journal":{"name":"Salmonella - a Challenge From Farm to Fork [Working Title]","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Salmonella - a Challenge From Farm to Fork [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.96984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This chapter discusses application of natural parasites of bacteria, bacteriophages (phages), as a promising biological control for Salmonella in poultry and swine. Many studies have shown phages can be applied at different points from farm-to-fork, from pre to post slaughter, to control the spread of Salmonella in the food chain. Pre-slaughter applications include administering phages via oral gavage, in drinking water and in feed. Post slaughter applications include adding phages to carcasses and during packaging of meat products. The research discussed in this chapter demonstrate a set of promising data that relate to the ability of phages to reduce Salmonella colonisation and abundance. Collectively the studies support the viability of phage as antimicrobial prophylactics and therapeutics to prevent and control Salmonella in the food chain.