Interactive and Collaborative Visual Analysis on Traffic Sensor Data

Chufan Lai, Qiangqiang Liu, Lu Feng, Chenglei Yue, Xi Chen, Yang Hu, Zhanyi Wang, Pengju Teng, Xiaoru Yuan
{"title":"Interactive and Collaborative Visual Analysis on Traffic Sensor Data","authors":"Chufan Lai, Qiangqiang Liu, Lu Feng, Chenglei Yue, Xi Chen, Yang Hu, Zhanyi Wang, Pengju Teng, Xiaoru Yuan","doi":"10.1109/VAST.2017.8585432","DOIUrl":null,"url":null,"abstract":"In VAST Challenge 2017, we propose an interactive and collaborative visual analytic system for the analysis of traffic sensor data. Our system fully incorporates the power of spatial-temporal visualization, sequence mining techniques and collaborative analysis. It allows users to conduct multi-facet and interactive data analysis in a highly efficient way. We discuss technical details in this report, and demonstrate the effectiveness of our system via convincing cases.","PeriodicalId":149607,"journal":{"name":"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VAST.2017.8585432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In VAST Challenge 2017, we propose an interactive and collaborative visual analytic system for the analysis of traffic sensor data. Our system fully incorporates the power of spatial-temporal visualization, sequence mining techniques and collaborative analysis. It allows users to conduct multi-facet and interactive data analysis in a highly efficient way. We discuss technical details in this report, and demonstrate the effectiveness of our system via convincing cases.
交通传感器数据的交互与协同可视化分析
在VAST挑战赛2017中,我们提出了一个交互式和协作的视觉分析系统,用于分析交通传感器数据。我们的系统充分融合了时空可视化、序列挖掘技术和协同分析的力量。它允许用户以高效的方式进行多方面和交互式的数据分析。我们在本报告中讨论了技术细节,并通过令人信服的案例证明了我们系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信