CMOS device optimization for system-on-a-chip applications

K. Imai, K. Yamaguchi, T. Kudo, N. Kimizuka, H. Onishi, A. Ono, Y. Nakahara, Y. Goto, K. Noda, S. Masuoka, S. Ito, K. Matsui, K. Ando, E. Hasegawa, T. Ohashi, N. Oda, K. Yokoyama, T. Takewaki, S. Sone, T. Horiuchi
{"title":"CMOS device optimization for system-on-a-chip applications","authors":"K. Imai, K. Yamaguchi, T. Kudo, N. Kimizuka, H. Onishi, A. Ono, Y. Nakahara, Y. Goto, K. Noda, S. Masuoka, S. Ito, K. Matsui, K. Ando, E. Hasegawa, T. Ohashi, N. Oda, K. Yokoyama, T. Takewaki, S. Sone, T. Horiuchi","doi":"10.1109/IEDM.2000.904354","DOIUrl":null,"url":null,"abstract":"This paper describes a 0.13-/spl mu/m-generation CMOS technology optimized for system-on-a-chip (SoC) applications. The wide-range of performances obtained using a triple gate oxide and multiple threshold voltage control allows the SoC to operate at high speed with low standby power. Core CMOS transistors, which have a 1.9 nm gate oxide and a 95-nm physical gate length, show an excellent drive current of 740/335 /spl mu/A//spl mu/m at 1.2 V. Low power CMOS transistors have a standby current of only 2-0.2 pA//spl mu/m with a 2.6-nm gate oxide and a 120-nm gate length. This technology has also been used to make a 1.4-/spl mu/m/sup 2/ loadless 4T SRAM cell as well as a 2.5-/spl mu/m/sup 2/ 6T cell. The wiring RC delay has been reduced by integrating Cu interconnects with a low-k \"ladder-oxide\" layer.","PeriodicalId":276800,"journal":{"name":"International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138)","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2000.904354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper describes a 0.13-/spl mu/m-generation CMOS technology optimized for system-on-a-chip (SoC) applications. The wide-range of performances obtained using a triple gate oxide and multiple threshold voltage control allows the SoC to operate at high speed with low standby power. Core CMOS transistors, which have a 1.9 nm gate oxide and a 95-nm physical gate length, show an excellent drive current of 740/335 /spl mu/A//spl mu/m at 1.2 V. Low power CMOS transistors have a standby current of only 2-0.2 pA//spl mu/m with a 2.6-nm gate oxide and a 120-nm gate length. This technology has also been used to make a 1.4-/spl mu/m/sup 2/ loadless 4T SRAM cell as well as a 2.5-/spl mu/m/sup 2/ 6T cell. The wiring RC delay has been reduced by integrating Cu interconnects with a low-k "ladder-oxide" layer.
片上系统应用的CMOS器件优化
本文介绍了针对片上系统(SoC)应用优化的0.13-/spl mu/m一代CMOS技术。使用三栅极氧化物和多个阈值电压控制获得的广泛性能允许SoC以低待机功率高速运行。具有1.9 nm栅极氧化物和95 nm物理栅极长度的核心CMOS晶体管在1.2 V时显示出740/335 /spl mu/ a //spl mu/m的优异驱动电流。低功耗CMOS晶体管待机电流仅为2-0.2 pA//spl mu/m,栅极氧化物为2.6 nm,栅极长度为120 nm。该技术还被用于制造1.4-/spl mu/m/sup 2/无负载4T SRAM单元以及2.5-/spl mu/m/sup 2/ 6T单元。通过将Cu互连与低k“阶梯氧化物”层集成,减少了布线RC延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信