Interconnect-Centric Benchmarking of In-Memory Acceleration for DNNS

G. Krishnan, Sumit K. Mandai, C. Chakrabarti, Jae-sun Seo, U. Ogras, Yu Cao
{"title":"Interconnect-Centric Benchmarking of In-Memory Acceleration for DNNS","authors":"G. Krishnan, Sumit K. Mandai, C. Chakrabarti, Jae-sun Seo, U. Ogras, Yu Cao","doi":"10.1109/CSTIC52283.2021.9461480","DOIUrl":null,"url":null,"abstract":"In-memory computing (IMC) provides a dense and parallel structure for high performance and energy-efficient acceleration of deep neural networks (DNNs). The increased computational density of IMC architectures results in increased on -chip communication costs, stressing the interconnect fabric. In this work, we develop a novel performance benchmark tool for IMC architectures that incorporates device, circuits, architecture, and interconnect under a single roof. The tool assesses the area, energy, and latency of the IMC accelerator. We analyze three interconnect cases to illustrate the versatility of the tool: (1) Point-to-point (P2P) and network-on-chip (NoC) based IMC architectures to demonstrate the criticality of the interconnect choice; (2) Area and energy optimization to improve IMC utilization and reduce on-chip interconnect cost; (3) Evaluation of a reconfigurable NoC to achieve minimum on-chip communication latency. Through these studies, we motivate the need for future work in the design of optimal on-chip and off-chip interconnect fabrics for IMC architectures.","PeriodicalId":186529,"journal":{"name":"2021 China Semiconductor Technology International Conference (CSTIC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 China Semiconductor Technology International Conference (CSTIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSTIC52283.2021.9461480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In-memory computing (IMC) provides a dense and parallel structure for high performance and energy-efficient acceleration of deep neural networks (DNNs). The increased computational density of IMC architectures results in increased on -chip communication costs, stressing the interconnect fabric. In this work, we develop a novel performance benchmark tool for IMC architectures that incorporates device, circuits, architecture, and interconnect under a single roof. The tool assesses the area, energy, and latency of the IMC accelerator. We analyze three interconnect cases to illustrate the versatility of the tool: (1) Point-to-point (P2P) and network-on-chip (NoC) based IMC architectures to demonstrate the criticality of the interconnect choice; (2) Area and energy optimization to improve IMC utilization and reduce on-chip interconnect cost; (3) Evaluation of a reconfigurable NoC to achieve minimum on-chip communication latency. Through these studies, we motivate the need for future work in the design of optimal on-chip and off-chip interconnect fabrics for IMC architectures.
以互连为中心的DNNS内存加速基准测试
内存计算(IMC)为深度神经网络(dnn)的高性能和高能效加速提供了密集并行的结构。IMC架构的计算密度增加导致片上通信成本增加,对互连结构造成压力。在这项工作中,我们为IMC架构开发了一种新的性能基准工具,该工具将器件、电路、架构和互连集成在一个屋檐下。该工具可评估IMC加速器的面积、能量和延迟。我们分析了三个互连案例来说明该工具的多功能性:(1)点对点(P2P)和基于片上网络(NoC)的IMC架构,以展示互连选择的重要性;(2)优化面积和能量,提高IMC利用率,降低片上互连成本;(3)评估可重构NoC以实现最小片上通信延迟。通过这些研究,我们激发了对IMC架构的最佳片内和片外互连结构设计的未来工作的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信