Xiaokang Ye, X. Cai, X. Yin, J. Rodríguez-Piñeiro, Li Tian, Jianwu Dou
{"title":"Air-to-Ground Big-Data-Assisted Channel Modeling Based on Passive Sounding in LTE Networks","authors":"Xiaokang Ye, X. Cai, X. Yin, J. Rodríguez-Piñeiro, Li Tian, Jianwu Dou","doi":"10.1109/GLOCOMW.2017.8269204","DOIUrl":null,"url":null,"abstract":"In this paper, a novel approach of channel modeling based on big data analysis is proposed that is applied to extract air-to-ground channel models from down-link signals collected by using an Unmanned Aerial Vehicle (UAV) in operating Long-Term-Evolution (LTE) networks. In this approach, the most \"sensitive\" channel parameter to the UAV height is chosen based on a feature selection algorithm from a parameter set consisting of nine channel parameters calculated from channel impulse responses. In the case considered here, the K-factor is found to be the most height-sensitive parameter. The behavior of the mean of K-factor is modeled as a piece-wise function against height which demonstrates a break point that is determined by assessing the contribution of height-dependent samples to the overall entropy. The residuals of subtracting the mean K-factor are statistically modeled. The results illustrate that the proposed big-data-assisted approach is applicable to provide accurate description of channel statistics versus the variables of interests.","PeriodicalId":345352,"journal":{"name":"2017 IEEE Globecom Workshops (GC Wkshps)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2017.8269204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
In this paper, a novel approach of channel modeling based on big data analysis is proposed that is applied to extract air-to-ground channel models from down-link signals collected by using an Unmanned Aerial Vehicle (UAV) in operating Long-Term-Evolution (LTE) networks. In this approach, the most "sensitive" channel parameter to the UAV height is chosen based on a feature selection algorithm from a parameter set consisting of nine channel parameters calculated from channel impulse responses. In the case considered here, the K-factor is found to be the most height-sensitive parameter. The behavior of the mean of K-factor is modeled as a piece-wise function against height which demonstrates a break point that is determined by assessing the contribution of height-dependent samples to the overall entropy. The residuals of subtracting the mean K-factor are statistically modeled. The results illustrate that the proposed big-data-assisted approach is applicable to provide accurate description of channel statistics versus the variables of interests.