{"title":"Radial symmetry for an elliptic PDE with a free boundary","authors":"L. Hajj, H. Shahgholian","doi":"10.1090/bproc/88","DOIUrl":null,"url":null,"abstract":"<p>In this paper we prove symmetry for solutions to the semi-linear elliptic equation <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta u equals f left-parenthesis u right-parenthesis in upper B 1 comma 0 less-than-or-equal-to u greater-than upper M comma in upper B 1 comma u equals upper M comma on partial-differential upper B 1 comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:mi>u</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mspace width=\"1em\" />\n <mml:mtext> in </mml:mtext>\n <mml:msub>\n <mml:mi>B</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mspace width=\"2em\" />\n <mml:mn>0</mml:mn>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi>u</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mspace width=\"1em\" />\n <mml:mtext> in </mml:mtext>\n <mml:msub>\n <mml:mi>B</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mspace width=\"2em\" />\n <mml:mi>u</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mspace width=\"1em\" />\n <mml:mtext> on </mml:mtext>\n <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi>\n <mml:msub>\n <mml:mi>B</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\Delta u = f(u) \\quad \\text { in } B_1, \\qquad 0 \\leq u > M, \\quad \\text { in } B_1, \\qquad u = M, \\quad \\text { on } \\partial B_1, \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>M</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">M>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a constant, and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>B</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">B_1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the unit ball. Under certain assumptions on the r.h.s. <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis u right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f (u)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-regularity of the free boundary <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"partial-differential left-brace u greater-than 0 right-brace\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mi>u</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\partial \\{u>0\\}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and a second order asymptotic expansion for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\">\n <mml:semantics>\n <mml:mi>u</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">u</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> at free boundary points, we derive the spherical symmetry of solutions. A key tool, in addition to the classical moving plane technique, is a boundary Harnack principle (with r.h.s.) that replaces Serrin’s celebrated boundary point lemma, which is not available in our case due to lack of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-regularity of solutions.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"105 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper we prove symmetry for solutions to the semi-linear elliptic equation Δu=f(u) in B1,0≤u>M, in B1,u=M, on ∂B1,\begin{equation*} \Delta u = f(u) \quad \text { in } B_1, \qquad 0 \leq u > M, \quad \text { in } B_1, \qquad u = M, \quad \text { on } \partial B_1, \end{equation*}
where M>0M>0 is a constant, and B1B_1 is the unit ball. Under certain assumptions on the r.h.s. f(u)f (u), the C1C^1-regularity of the free boundary ∂{u>0}\partial \{u>0\} and a second order asymptotic expansion for uu at free boundary points, we derive the spherical symmetry of solutions. A key tool, in addition to the classical moving plane technique, is a boundary Harnack principle (with r.h.s.) that replaces Serrin’s celebrated boundary point lemma, which is not available in our case due to lack of C2C^2-regularity of solutions.
本文证明了半线性椭圆方程Δ u = f (u)在b1中,0≤u > M,在b1中,u = M,在∂b1中,\begin{equation*} \Delta u = f(u) \quad \text { in } B_1, \qquad 0 \leq u > M, \quad \text { in } B_1, \qquad u = M, \quad \text { on } \partial B_1, \end{equation*},其中M>0 M>0是一个常数,b1 B_1是单位球。在r.h.s. f (u) f (u)的某些假设下,自由边界∂u{>0 }\partial {u>0}的C 1 C^1 -正则性和u u在自由边界点的二阶渐近展开式,我们导出了解的球对称性。除了经典的移动平面技术之外,一个关键的工具是边界哈纳克原理(带r.h.s),它取代了Serrin著名的边界点引理,由于缺乏解的c2c - C^2正则性,在我们的情况下不可用。