A synthetic neural integrated circuit

L. Akers, M. Walker, R. Grondin, D. Ferry
{"title":"A synthetic neural integrated circuit","authors":"L. Akers, M. Walker, R. Grondin, D. Ferry","doi":"10.1109/CICC.1989.56743","DOIUrl":null,"url":null,"abstract":"Integrated circuits are approaching biological complexity in device count. Biological systems are fault tolerant, adaptive, and trainable, and the possibility exists for similar characteristics in ICs. The authors report a limited-interconnect, highly layered synthetic neural network that implements these ideals. These networks are specifically designed to scale to tens of thousands of processing elements on current production size dies. A compact analog cell, a training algorithm, and a limited-interconnect architecture which has demonstrated neuromorphic behavior are described","PeriodicalId":165054,"journal":{"name":"1989 Proceedings of the IEEE Custom Integrated Circuits Conference","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1989 Proceedings of the IEEE Custom Integrated Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.1989.56743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Integrated circuits are approaching biological complexity in device count. Biological systems are fault tolerant, adaptive, and trainable, and the possibility exists for similar characteristics in ICs. The authors report a limited-interconnect, highly layered synthetic neural network that implements these ideals. These networks are specifically designed to scale to tens of thousands of processing elements on current production size dies. A compact analog cell, a training algorithm, and a limited-interconnect architecture which has demonstrated neuromorphic behavior are described
合成神经集成电路
集成电路在器件数量上接近生物复杂性。生物系统具有容错性、适应性和可训练性,在集成电路中存在类似特性的可能性。作者报告了一个有限互连,高度分层的合成神经网络,实现了这些理想。这些网络专门设计用于在当前生产尺寸的模具上扩展到数万个加工元件。描述了一种紧凑的模拟细胞、一种训练算法和一种有限互连结构,这种结构已经证明了神经形态行为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信