Quantum assisted unsupervised data clustering on the basis of neural networks

I. D. Lazarev, Marek Narozniak, T. Byrnes, A. Pyrkov
{"title":"Quantum assisted unsupervised data clustering on the basis of neural networks","authors":"I. D. Lazarev, Marek Narozniak, T. Byrnes, A. Pyrkov","doi":"10.1117/12.2625092","DOIUrl":null,"url":null,"abstract":"Recent progress in machine learning has affected almost all areas of the modern economy. The use of quantum protocols to speed up classical machine learning approaches may have further profound effects on society in the future. Here, we developed a hybrid quantum-assisted self-organizing feature map, a type of artificial neural network, and apply it to the data clustering problem in an unsupervised manner. We show that it allows us to reduce the number of calculations in a number of clusters. It is believed that similar types of hybrid quantum classical algorithms can be the main test bed to achieve practical quantum supremacy on Noisy Intermediate Scale Quantum devices.","PeriodicalId":388511,"journal":{"name":"International Conference on Micro- and Nano-Electronics","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Micro- and Nano-Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2625092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent progress in machine learning has affected almost all areas of the modern economy. The use of quantum protocols to speed up classical machine learning approaches may have further profound effects on society in the future. Here, we developed a hybrid quantum-assisted self-organizing feature map, a type of artificial neural network, and apply it to the data clustering problem in an unsupervised manner. We show that it allows us to reduce the number of calculations in a number of clusters. It is believed that similar types of hybrid quantum classical algorithms can be the main test bed to achieve practical quantum supremacy on Noisy Intermediate Scale Quantum devices.
基于神经网络的量子辅助无监督数据聚类
机器学习的最新进展几乎影响了现代经济的所有领域。使用量子协议来加速经典机器学习方法可能会对未来的社会产生进一步深远的影响。在这里,我们开发了一种混合量子辅助自组织特征映射,一种人工神经网络,并将其应用于无监督方式的数据聚类问题。我们表明,它允许我们减少一些集群中的计算次数。认为类似类型的混合量子经典算法可以作为在噪声中尺度量子器件上实现实际量子霸权的主要测试平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信