FlowTune

Cunxi Yu
{"title":"FlowTune","authors":"Cunxi Yu","doi":"10.1145/3400302.3415615","DOIUrl":null,"url":null,"abstract":"Recent years have seen increasing employment of decision intelligence in electronic design automation (EDA), which aims to reduce the manual efforts and boost the design closure process in modern toolflows. However, existing approaches either require a large number of labeled data for training or are limited in practical EDA toolflow integration due to computation overhead. This paper presents a generic end-to-end and high-performance domain-specific, multi-stage multi-armed bandit framework for Boolean logic optimization. This framework addresses optimization problems on a) And-Inv-Graphs (# nodes), b) Conjunction Normal Form (CNF) minimization (# clauses) for Boolean Satisfiability, c) post static timing analysis (STA) delay and area optimization for standard-cell technology mapping, and d) FPGA technology mapping for 6-in LUT architectures. Moreover, the proposed framework has been integrated with ABC [1], Yosys [2], VTR [3], and industrial tools. The experimental results demonstrate that our framework outperforms both hand-crafted flows [1] and ML explored flows [4], [5] in quality of results, and is orders of magnitude faster compared to ML-based approaches [4], [5].","PeriodicalId":367868,"journal":{"name":"Proceedings of the 39th International Conference on Computer-Aided Design","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3400302.3415615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Recent years have seen increasing employment of decision intelligence in electronic design automation (EDA), which aims to reduce the manual efforts and boost the design closure process in modern toolflows. However, existing approaches either require a large number of labeled data for training or are limited in practical EDA toolflow integration due to computation overhead. This paper presents a generic end-to-end and high-performance domain-specific, multi-stage multi-armed bandit framework for Boolean logic optimization. This framework addresses optimization problems on a) And-Inv-Graphs (# nodes), b) Conjunction Normal Form (CNF) minimization (# clauses) for Boolean Satisfiability, c) post static timing analysis (STA) delay and area optimization for standard-cell technology mapping, and d) FPGA technology mapping for 6-in LUT architectures. Moreover, the proposed framework has been integrated with ABC [1], Yosys [2], VTR [3], and industrial tools. The experimental results demonstrate that our framework outperforms both hand-crafted flows [1] and ML explored flows [4], [5] in quality of results, and is orders of magnitude faster compared to ML-based approaches [4], [5].
FlowTune
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信