A Review on Quantum Computing: From Qubits to Front-end Electronics and Cryogenic MOSFET Physics

F. Jazaeri, A. Beckers, A. Tajalli, J. Sallese
{"title":"A Review on Quantum Computing: From Qubits to Front-end Electronics and Cryogenic MOSFET Physics","authors":"F. Jazaeri, A. Beckers, A. Tajalli, J. Sallese","doi":"10.23919/MIXDES.2019.8787164","DOIUrl":null,"url":null,"abstract":"Quantum computing (QC) has already entered the industrial landscape and several multinational corporations have initiated their own research efforts. So far, many of these efforts have been focusing on superconducting qubits, whose industrial progress is currently way ahead of all other qubit implementations. This paper briefly reviews the progress made on the silicon-based QC platform, which is highly promising to meet the scale-up challenges by leveraging the semiconductor industry. We look at different types of qubits, the advantages of silicon, and techniques for qubit manipulation in the solid state. Finally, we discuss the possibility of co-integrating silicon qubits with FET-based, cooled front-end electronics, and review the device physics of MOSFETs at deep cryogenic temperatures.","PeriodicalId":309822,"journal":{"name":"2019 MIXDES - 26th International Conference \"Mixed Design of Integrated Circuits and Systems\"","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 MIXDES - 26th International Conference \"Mixed Design of Integrated Circuits and Systems\"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MIXDES.2019.8787164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

Quantum computing (QC) has already entered the industrial landscape and several multinational corporations have initiated their own research efforts. So far, many of these efforts have been focusing on superconducting qubits, whose industrial progress is currently way ahead of all other qubit implementations. This paper briefly reviews the progress made on the silicon-based QC platform, which is highly promising to meet the scale-up challenges by leveraging the semiconductor industry. We look at different types of qubits, the advantages of silicon, and techniques for qubit manipulation in the solid state. Finally, we discuss the possibility of co-integrating silicon qubits with FET-based, cooled front-end electronics, and review the device physics of MOSFETs at deep cryogenic temperatures.
量子计算综述:从量子比特到前端电子学和低温MOSFET物理
量子计算(QC)已经进入工业领域,一些跨国公司已经开始了自己的研究工作。到目前为止,许多这些努力都集中在超导量子比特上,其工业进展目前远远领先于所有其他量子比特的实现。本文简要回顾了硅基QC平台的进展,该平台非常有希望通过利用半导体行业来满足规模扩大的挑战。我们研究了不同类型的量子比特,硅的优势,以及在固态中操纵量子比特的技术。最后,我们讨论了硅量子比特与基于fet的冷却前端电子器件共积的可能性,并回顾了mosfet在深低温下的器件物理特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信