{"title":"Complex division with prescaling of operands","authors":"J. Muller","doi":"10.1109/ASAP.2003.1212854","DOIUrl":null,"url":null,"abstract":"We adapt the radix-r digit-recurrence division algorithm to complex division. By prescaling the operands, we make the selection of quotient digits simple. This leads to a simple hardware implementation, and allows correct rounding of complex quotient. To reduce large prescaling tables required for radices greater than 4, we adapt the bipartite-table method to multiple-operand functions.","PeriodicalId":261592,"journal":{"name":"Proceedings IEEE International Conference on Application-Specific Systems, Architectures, and Processors. ASAP 2003","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Application-Specific Systems, Architectures, and Processors. ASAP 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2003.1212854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
We adapt the radix-r digit-recurrence division algorithm to complex division. By prescaling the operands, we make the selection of quotient digits simple. This leads to a simple hardware implementation, and allows correct rounding of complex quotient. To reduce large prescaling tables required for radices greater than 4, we adapt the bipartite-table method to multiple-operand functions.