Which wage distributions are consistent with statistical discrimination?

R. Deb, L. Renou
{"title":"Which wage distributions are consistent with statistical discrimination?","authors":"R. Deb, L. Renou","doi":"10.1145/3580507.3597667","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a general non-parametric model of statistical discrimination in the labor market, and derive a test for statistical discrimination that only requires cross-sectional data on wages. There are two groups whose productivity distributions have identical means, but can otherwise be different. The group identity is observable to employers, but productivities are not. Instead, there are group-dependent statistical experiments that generate signals about the underlying productivity. Signals induce posterior productivity distributions (via Bayes' rule) and, in particular, these can be used to compute posterior estimates (the mean of the productivity conditional on the signal) of the unobserved productivity. Therefore, each group's statistical experiment generates a distribution over posterior productivity estimates. Wages are then determined via a strictly increasing, continuous function of the posterior productivity estimate that, importantly, does not depend on the group. We say that two wage distributions - one for each of the two groups - are consistent with statistical discrimination if they can be rationalized by this model.","PeriodicalId":210555,"journal":{"name":"Proceedings of the 24th ACM Conference on Economics and Computation","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3580507.3597667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a general non-parametric model of statistical discrimination in the labor market, and derive a test for statistical discrimination that only requires cross-sectional data on wages. There are two groups whose productivity distributions have identical means, but can otherwise be different. The group identity is observable to employers, but productivities are not. Instead, there are group-dependent statistical experiments that generate signals about the underlying productivity. Signals induce posterior productivity distributions (via Bayes' rule) and, in particular, these can be used to compute posterior estimates (the mean of the productivity conditional on the signal) of the unobserved productivity. Therefore, each group's statistical experiment generates a distribution over posterior productivity estimates. Wages are then determined via a strictly increasing, continuous function of the posterior productivity estimate that, importantly, does not depend on the group. We say that two wage distributions - one for each of the two groups - are consistent with statistical discrimination if they can be rationalized by this model.
哪些工资分配符合统计歧视?
在本文中,我们提出了劳动力市场中统计歧视的一般非参数模型,并推导了仅需要工资横截面数据的统计歧视检验。有两组人的生产率分布均值相同,但在其他方面可能不同。雇主可以观察到员工的群体身份,但生产力却不能。相反,有一些群体相关的统计实验,可以产生有关潜在生产力的信号。信号诱导后验生产率分布(通过贝叶斯规则),特别是,这些可用于计算未观察到的生产率的后验估计(以信号为条件的生产率的平均值)。因此,每组的统计实验产生了后验生产率估计的分布。然后,工资是通过后验生产率估计的一个严格递增的连续函数来确定的,重要的是,这个函数不依赖于群体。我们说,两种工资分配——两组各有一种——如果可以通过这个模型加以合理化,就符合统计歧视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信