Joelle Al Hage, Nourdine Ait Tmazirte, Maan El Badaoui El Najjar, D. Pomorski
{"title":"Fault detection and exclusion method for a tightly coupled localization system","authors":"Joelle Al Hage, Nourdine Ait Tmazirte, Maan El Badaoui El Najjar, D. Pomorski","doi":"10.1109/ICAR.2015.7251521","DOIUrl":null,"url":null,"abstract":"Integrity monitoring for a positioning method permit us to guarantee a high integrity localization which is needed for an autonomous navigation system. Different approaches for localization integrity monitoring have been developed. In this paper, we propose a Fault Detection and Exclusion (FDE) method based on information metrics since it provides tools that allow designing residual test that increase the integrity of localization. A residual test based on the Kullback-Leibler divergence (KLD) is elaborated. It is integrated in a FDE architecture applied to localization using a tightly coupled multi-sensor (GPS and odometer) data fusion method.","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2015.7251521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Integrity monitoring for a positioning method permit us to guarantee a high integrity localization which is needed for an autonomous navigation system. Different approaches for localization integrity monitoring have been developed. In this paper, we propose a Fault Detection and Exclusion (FDE) method based on information metrics since it provides tools that allow designing residual test that increase the integrity of localization. A residual test based on the Kullback-Leibler divergence (KLD) is elaborated. It is integrated in a FDE architecture applied to localization using a tightly coupled multi-sensor (GPS and odometer) data fusion method.