Generative AI for Reengineering Variants into Software Product Lines: An Experience Report

M. Acher, Jabier Martinez
{"title":"Generative AI for Reengineering Variants into Software Product Lines: An Experience Report","authors":"M. Acher, Jabier Martinez","doi":"10.1145/3579028.3609016","DOIUrl":null,"url":null,"abstract":"The migration and reengineering of existing variants into a software product line (SPL) is an error-prone and time-consuming activity. Many extractive approaches have been proposed, spanning different activities from feature identification and naming to the synthesis of reusable artefacts. In this paper, we explore how large language model (LLM)-based assistants can support domain analysts and developers. We revisit four illustrative cases of the literature where the challenge is to migrate variants written in different formalism (UML class diagrams, Java, GraphML, statecharts). We systematically report on our experience with ChatGPT-4, describing our strategy to prompt LLMs and documenting positive aspects but also failures. We compare the use of LLMs with state-of-the-art approach, BUT4Reuse. While LLMs offer potential in assisting domain analysts and developers in transitioning software variants into SPLs, their intrinsic stochastic nature and restricted ability to manage large variants or complex structures necessitate a semiautomatic approach, complete with careful review, to counteract inaccuracies.","PeriodicalId":340233,"journal":{"name":"Proceedings of the 27th ACM International Systems and Software Product Line Conference - Volume B","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM International Systems and Software Product Line Conference - Volume B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3579028.3609016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The migration and reengineering of existing variants into a software product line (SPL) is an error-prone and time-consuming activity. Many extractive approaches have been proposed, spanning different activities from feature identification and naming to the synthesis of reusable artefacts. In this paper, we explore how large language model (LLM)-based assistants can support domain analysts and developers. We revisit four illustrative cases of the literature where the challenge is to migrate variants written in different formalism (UML class diagrams, Java, GraphML, statecharts). We systematically report on our experience with ChatGPT-4, describing our strategy to prompt LLMs and documenting positive aspects but also failures. We compare the use of LLMs with state-of-the-art approach, BUT4Reuse. While LLMs offer potential in assisting domain analysts and developers in transitioning software variants into SPLs, their intrinsic stochastic nature and restricted ability to manage large variants or complex structures necessitate a semiautomatic approach, complete with careful review, to counteract inaccuracies.
生成式人工智能用于软件产品线的变体再造:经验报告
将现有的变体迁移和再工程到软件产品线(SPL)是一项容易出错且耗时的活动。已经提出了许多提取方法,涵盖了从特征识别和命名到可重用工件的合成的不同活动。在本文中,我们探讨了基于大型语言模型(LLM)的助手如何支持领域分析师和开发人员。我们回顾了文献中的四个说明性案例,其中的挑战是迁移以不同形式编写的变量(UML类图、Java、GraphML、状态图)。我们系统地报告了我们使用ChatGPT-4的经验,描述了我们促进法学硕士的策略,并记录了积极的方面和失败的方面。我们将llm的使用与最先进的方法BUT4Reuse进行比较。虽然llm在帮助领域分析师和开发人员将软件变体转换为SPLs方面提供了潜力,但它们固有的随机性和管理大型变体或复杂结构的有限能力需要一种半自动的方法,并进行仔细的审查,以抵消不准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信