Artificial Synapse based on Dual-gate Organic Thin-Film Transistor

Weihong Yang, Xiaokuan Yin, Lei Han, S. Ogier, Xiaojun Guo
{"title":"Artificial Synapse based on Dual-gate Organic Thin-Film Transistor","authors":"Weihong Yang, Xiaokuan Yin, Lei Han, S. Ogier, Xiaojun Guo","doi":"10.1109/IFETC53656.2022.9948479","DOIUrl":null,"url":null,"abstract":"This work presents the possibility of incorporating both biological synaptic plasticity and hysteresis-free switching properties in the same organic thin-film transistor (OTFT) device by taking advantages of the dual-gate structure. It is achieved by forming a high-quality top channel-dielectric interface, while leaving the bottom channel-dielectric interface with charge traps. When only the top-gate being switched, the device exhibits hysteresis-free switching properties. When the two gates are connected, charge trapping/de-trapping at the bottom interface brings biological synaptic plasticity properties. Photo-enhanced synaptic properties are also presented with this device.","PeriodicalId":289035,"journal":{"name":"2022 IEEE International Flexible Electronics Technology Conference (IFETC)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Flexible Electronics Technology Conference (IFETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFETC53656.2022.9948479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents the possibility of incorporating both biological synaptic plasticity and hysteresis-free switching properties in the same organic thin-film transistor (OTFT) device by taking advantages of the dual-gate structure. It is achieved by forming a high-quality top channel-dielectric interface, while leaving the bottom channel-dielectric interface with charge traps. When only the top-gate being switched, the device exhibits hysteresis-free switching properties. When the two gates are connected, charge trapping/de-trapping at the bottom interface brings biological synaptic plasticity properties. Photo-enhanced synaptic properties are also presented with this device.
基于双栅有机薄膜晶体管的人工突触
这项工作提出了利用双栅结构在同一有机薄膜晶体管(OTFT)器件中结合生物突触可塑性和无迟滞开关特性的可能性。这是通过形成高质量的顶部通道-介电界面,同时使底部通道-介电界面具有电荷陷阱来实现的。当仅顶栅极开关时,器件表现出无迟滞开关特性。当两个门连接时,底部界面的电荷捕获/去捕获带来了生物突触可塑性特性。光增强的突触特性也呈现在这个装置上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信