Low power and high speed multiplication design through mixed number representations

Menghui Zheng, A. Albicki
{"title":"Low power and high speed multiplication design through mixed number representations","authors":"Menghui Zheng, A. Albicki","doi":"10.1109/ICCD.1995.528924","DOIUrl":null,"url":null,"abstract":"A low power multiplication algorithm and its VLSI architecture using a mixed number representation is proposed. The reduced switching activity and low power dissipation are achieved through the Sign-Magnitude (SM) notation for the multiplicand and through a novel design of the Redundant Binary (RB) adder and Booth decoder. The high speed operation is achieved through the Carry-Propagation-Free (CPF) accumulation of the Partial Products (PP) by using the RB notation. Analysis showed that the switching activity in the PP generation process can be reduced on average by 90%. Compared to the same type of multipliers, the proposed design dissipates much less power and is 18% faster on average.","PeriodicalId":281907,"journal":{"name":"Proceedings of ICCD '95 International Conference on Computer Design. VLSI in Computers and Processors","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICCD '95 International Conference on Computer Design. VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.1995.528924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

A low power multiplication algorithm and its VLSI architecture using a mixed number representation is proposed. The reduced switching activity and low power dissipation are achieved through the Sign-Magnitude (SM) notation for the multiplicand and through a novel design of the Redundant Binary (RB) adder and Booth decoder. The high speed operation is achieved through the Carry-Propagation-Free (CPF) accumulation of the Partial Products (PP) by using the RB notation. Analysis showed that the switching activity in the PP generation process can be reduced on average by 90%. Compared to the same type of multipliers, the proposed design dissipates much less power and is 18% faster on average.
通过混合数字表示的低功耗和高速乘法设计
提出了一种采用混合数字表示的低功耗乘法算法及其VLSI结构。通过乘法器的符号幅度(SM)表示法和冗余二进制(RB)加法器和Booth解码器的新颖设计,降低了开关活动和低功耗。高速运算是通过使用RB符号对部分积(PP)进行无载波传播(CPF)累加来实现的。分析表明,在PP生成过程中,开关活度可平均降低90%。与相同类型的乘法器相比,所提出的设计功耗更低,平均速度快18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信