Sebastian Reuter, Hilal Diab, S. Kowalewski, E. Hauck, S. Jeschke
{"title":"Design and implementation of a vehicle dynamics control system by means of torque vectoring for an autonomous vehicle","authors":"Sebastian Reuter, Hilal Diab, S. Kowalewski, E. Hauck, S. Jeschke","doi":"10.1109/ROBIO.2012.6491211","DOIUrl":null,"url":null,"abstract":"This paper describes to which extent the operational envelope of scaled vehicles can be extended by integrating a vehicle dynamics control system using torque vectoring. A detailed description for the construction of a mechatronic basis for an autonomous model car in a 1:10th scale is given. The design of the vehicle only uses standardized components and allows the most possible flexibility of controlling the vehicles dynamics behavior by applying individual driving moments to the wheels.","PeriodicalId":426468,"journal":{"name":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2012.6491211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper describes to which extent the operational envelope of scaled vehicles can be extended by integrating a vehicle dynamics control system using torque vectoring. A detailed description for the construction of a mechatronic basis for an autonomous model car in a 1:10th scale is given. The design of the vehicle only uses standardized components and allows the most possible flexibility of controlling the vehicles dynamics behavior by applying individual driving moments to the wheels.