Prioritized motion-force control of multi-constraints for industrial manipulators

Caixia Cai, N. Somani, Markus Rickert, A. Knoll
{"title":"Prioritized motion-force control of multi-constraints for industrial manipulators","authors":"Caixia Cai, N. Somani, Markus Rickert, A. Knoll","doi":"10.1109/ROBIO.2015.7418894","DOIUrl":null,"url":null,"abstract":"To synthesize whole-body behaviors interactively, multiple tasks and constraints need to be simultaneously satisfied, including those that guarantee the constraints imposed by the robot's structure and the external environment. In this paper, we present a prioritized, multiple-task control framework that is able to control forces in systems ranging from humanoids to industrial robots. Priorities between tasks are accomplished through null-space projection. Several relevant constraints (i.e., motion constraints, joint limits, force control) are tested to evaluate the control framework. Further, we evaluate the proposed approach in two typical industrial robotics applications: grasping of cylindrical objects and welding.","PeriodicalId":325536,"journal":{"name":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2015.7418894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

To synthesize whole-body behaviors interactively, multiple tasks and constraints need to be simultaneously satisfied, including those that guarantee the constraints imposed by the robot's structure and the external environment. In this paper, we present a prioritized, multiple-task control framework that is able to control forces in systems ranging from humanoids to industrial robots. Priorities between tasks are accomplished through null-space projection. Several relevant constraints (i.e., motion constraints, joint limits, force control) are tested to evaluate the control framework. Further, we evaluate the proposed approach in two typical industrial robotics applications: grasping of cylindrical objects and welding.
工业机械臂多约束的运动力优先控制
为了实现全身行为的交互合成,需要同时满足多个任务和约束,包括保证机器人结构和外部环境所施加的约束。在本文中,我们提出了一个优先的多任务控制框架,它能够控制从人形机器人到工业机器人的系统中的力。任务之间的优先级是通过零空间投影来实现的。几个相关的约束(即,运动约束,关节限制,力控制)进行测试,以评估控制框架。此外,我们在两个典型的工业机器人应用中评估了所提出的方法:圆柱形物体的抓取和焊接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信