On-line signature verification based on PCA feature reduction and statistical analysis

K. Ahmed, I. El-Henawy, M. Rashad, O. Nomir
{"title":"On-line signature verification based on PCA feature reduction and statistical analysis","authors":"K. Ahmed, I. El-Henawy, M. Rashad, O. Nomir","doi":"10.1109/ICCES.2010.5674907","DOIUrl":null,"url":null,"abstract":"This paper presents a novel online signature verification method that uses PCA for dimensional-reduction of signature snapshot. The resulting vectors from PCA are submitted to a multilayer perceptron (MLP) neural network with EBP and sigmoid activation function. In the other hand, Dynamic features such as x, y coordinates, pressure, velocity, acceleration, pen down time, distance, altitude, azimuth and inclination angles, etc. are processed statistically. During enrollment, five reference signatures are captured from each user. One-way ANOVA is used to analyze relative X-Coordinates in 6 groups (5 reference group, 1 testing group). ANOVA test will be repeated for relative Y-Coordinates, pressure value, azimuth and inclination angles. Thus, the algorithm will fill up a vector of five distances (F-scores) between all the possible pairs of testing and reference vectors. The resulting vector is compared to a threshold vector. Our database includes 130 genuine signatures and 170 forgery signatures. Our verification system has achieved a false acceptance rate (FAR) of 2% and a false rejection rate (FRR) of 5%","PeriodicalId":124411,"journal":{"name":"The 2010 International Conference on Computer Engineering & Systems","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2010 International Conference on Computer Engineering & Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2010.5674907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a novel online signature verification method that uses PCA for dimensional-reduction of signature snapshot. The resulting vectors from PCA are submitted to a multilayer perceptron (MLP) neural network with EBP and sigmoid activation function. In the other hand, Dynamic features such as x, y coordinates, pressure, velocity, acceleration, pen down time, distance, altitude, azimuth and inclination angles, etc. are processed statistically. During enrollment, five reference signatures are captured from each user. One-way ANOVA is used to analyze relative X-Coordinates in 6 groups (5 reference group, 1 testing group). ANOVA test will be repeated for relative Y-Coordinates, pressure value, azimuth and inclination angles. Thus, the algorithm will fill up a vector of five distances (F-scores) between all the possible pairs of testing and reference vectors. The resulting vector is compared to a threshold vector. Our database includes 130 genuine signatures and 170 forgery signatures. Our verification system has achieved a false acceptance rate (FAR) of 2% and a false rejection rate (FRR) of 5%
基于PCA特征约简和统计分析的在线签名验证
提出了一种利用PCA对签名快照进行降维的在线签名验证方法。主成分分析的结果向量被提交到具有EBP和s型激活函数的多层感知器(MLP)神经网络。另一方面,动态特征,如x, y坐标,压力,速度,加速度,笔下时间,距离,高度,方位角和倾角等进行统计处理。在注册期间,从每个用户捕获五个参考签名。采用单因素方差分析对6组(5个参照组,1个检验组)的相对x坐标进行分析。对相对y坐标、压力值、方位角和倾角重复方差分析。因此,该算法将填充所有可能的测试向量和参考向量对之间的五个距离(f分数)的向量。结果向量与阈值向量进行比较。我们的数据库包括130个真实签名和170个伪造签名。我们的验证系统实现了2%的误接受率(FAR)和5%的误拒率(FRR)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信