Optimal User Pairing for NOMA-assisted Cell-free Massive MIMO System

Xuan-Toan Dang, M. T. P. Le, Hieu V. Nguyen, Oh-Soon Shin
{"title":"Optimal User Pairing for NOMA-assisted Cell-free Massive MIMO System","authors":"Xuan-Toan Dang, M. T. P. Le, Hieu V. Nguyen, Oh-Soon Shin","doi":"10.1109/ICCE55644.2022.9852017","DOIUrl":null,"url":null,"abstract":"This study investigates user pairing strategies in a NOMA-assisted cell-free massive MIMO system. A random user pairing naturally leads to non-optimal performance, whereas an exhaustive search is unfavorable in practice due to high complexity. In this paper, we propose a joint optimization of user pairing strategy with beamforming and power allocation to maximize the minimum downlink rate per user. To solve the problem, we first relax the binary variables to continuous variables, and then we develop an iterative algorithm based on the inner approximation method. Numerical results show that the proposed user pairing algorithm outperforms the existing counterparts, such as beamforming, random pairing, far pairing, and close pairing strategies.","PeriodicalId":388547,"journal":{"name":"2022 IEEE Ninth International Conference on Communications and Electronics (ICCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Ninth International Conference on Communications and Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE55644.2022.9852017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates user pairing strategies in a NOMA-assisted cell-free massive MIMO system. A random user pairing naturally leads to non-optimal performance, whereas an exhaustive search is unfavorable in practice due to high complexity. In this paper, we propose a joint optimization of user pairing strategy with beamforming and power allocation to maximize the minimum downlink rate per user. To solve the problem, we first relax the binary variables to continuous variables, and then we develop an iterative algorithm based on the inner approximation method. Numerical results show that the proposed user pairing algorithm outperforms the existing counterparts, such as beamforming, random pairing, far pairing, and close pairing strategies.
noma辅助无小区大规模MIMO系统的最优用户配对
本研究探讨了noma辅助的无小区大规模MIMO系统中的用户配对策略。随机用户配对自然会导致非最优性能,而穷举搜索由于其高复杂性在实践中是不利的。本文提出了一种结合波束形成和功率分配的用户配对策略联合优化,以最大限度地提高每用户的最小下行速率。为了解决这一问题,我们首先将二元变量松弛为连续变量,然后开发了一种基于内逼近法的迭代算法。数值结果表明,本文提出的用户配对算法优于现有的波束形成、随机配对、远配对和近配对策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信